题目链接  Path Counting

题意  给定一棵高度为$n$的树,给出每一层的每个点的儿子个数(某一层的所有点儿子个数相同)。

    令$f_{k}$为长度为$k$的路径条数,求$f_{1}, f_{2}, ..., f_{2n-2}$。

考虑DP,设$f[i][j]$为从深度为$i$的点出发背对以$i$为根的子树(即任何时候都不进入以$i$为根的子树)走$j$步之后可以到达的点的个数。

(同一条边最多走一次)

那么$f[i][j] = f[i-1][j-1] + calc(i-1, j-1)$, $calc(i, j)$为从$i$点出发往以$i$为根的子树走$j$步能到达的点的个数。

然后这一层对答案的贡献即为$f[i][j] * g[i]$($g[i]$为第$i$层结点个数)

我们会发现这样那些一个点为另一个点的祖先的路径只统计了一次,其他路径统计了两次。

为了一致我们再求一遍前者类型路径的个数,加起来除以$2$即可。

时间复杂度$O(n^{2})$

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 5e3 + 10;
const int mod = 1e9 + 7;
const int rev = 5e8 + 4; int a[N << 1], f[N][N << 1];
int num[N << 1], c[N << 2], s[N << 1], inv[N << 1];
int ans[N << 1];
int n; inline int Pow(int a, int b, int mod){
int ret = 1;
for (; b; b >>= 1, a = 1ll * a * a % mod) if (b & 1) ret = 1ll * ret * a % mod;
return ret;
} int calc(int x, int y){
int ret = (a[x] + mod - 1) % mod;
ret = 1ll * ret * c[x + y - 1] % mod;
ret = 1ll * ret * inv[x] % mod;
return ret;
} int main(){ scanf("%d", &n);
rep(i, 1, n - 1) scanf("%d", a + i); num[1] = 1;
rep(i, 2, n) num[i] = 1ll * num[i - 1] * a[i - 1] % mod; c[0] = 1;
rep(i, 1, n) c[i] = 1ll * c[i - 1] * a[i] % mod; rep(i, 1, n) inv[i] = Pow(c[i], mod - 2, mod); s[0] = 0;
rep(i, 1, n) s[i] = (s[i - 1] + num[i]) % mod; rep(i, 2, n){
f[i][1] = 1;
rep(j, 2, 2 * n - 2){
f[i][j] = (1ll * f[i - 1][j - 1] + calc(i - 1, j - 1)) % mod;
}
} rep(i, 1, 2 * n - 2){
rep(j, 1, n){
ans[i] = (1ll * ans[i] + 1ll * f[j][i] * num[j]) % mod;
}
} rep(i, 1, n - 1){
ans[i] = (ans[i] + s[n]) % mod;
ans[i] = (ans[i] - s[i] + mod) % mod;
} rep(i, 1, 2 * n - 2) ans[i] = 1ll * ans[i] * rev % mod;
rep(i, 1, 2 * n - 2) printf("%d\n", ans[i]);
return 0;
}

Codeforces 954H Path Counting(DP)的更多相关文章

  1. Codeforces 954H Path Counting 【DP计数】*

    Codeforces 954H Path Counting LINK 题目大意:给你一棵n层的树,第i层的每个节点有a[i]个儿子节点,然后问你树上的简单路径中长度在1~n*2-2之间的每个有多少条 ...

  2. Codeforces Gym101341K:Competitions(DP)

    http://codeforces.com/gym/101341/problem/K 题意:给出n个区间,每个区间有一个l, r, w,代表区间左端点右端点和区间的权值,现在可以选取一些区间,要求选择 ...

  3. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  4. codeforces#1154F. Shovels Shop (dp)

    题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...

  5. jzoj6009. 【THUWC2019模拟2019.1.18】Counting (dp)

    Description 羽月最近发现,她发动能力的过程是这样的: 构建一个 V 个点的有向图 G,初始为没有任何边,接下来羽月在脑中构建出一个长度为 E 的边的序列,序列中元素两两不同,然后羽月将这些 ...

  6. Codeforces 1051 D.Bicolorings(DP)

    Codeforces 1051 D.Bicolorings 题意:一个2×n的方格纸,用黑白给格子涂色,要求分出k个连通块,求方案数. 思路:用0,1表示黑白,则第i列可以涂00,01,10,11,( ...

  7. Codeforces 1207C Gas Pipeline (dp)

    题目链接:http://codeforces.com/problemset/problem/1207/C 题目大意是给一条道路修管道,相隔一个单位的管道有两个柱子支撑,管道柱子高度可以是1可以是2,道 ...

  8. Codeforces 704C - Black Widow(dp)

    Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉这种题被评到 *2900 是因为细节太繁琐了,而不是题目本身的难度,所以我切掉这种题根本不能说明什么-- 首先题目中有一个非 ...

  9. Codeforces 682B New Skateboard(DP)

    题目大概说给一个数字组成的字符串问有几个子串其代表的数字(可以有前导0)能被4整除. dp[i][m]表示字符串0...i中mod 4为m的后缀的个数 通过在i-1添加str[i]字符转移,或者以st ...

随机推荐

  1. iOS程序执行顺序和UIViewController 的生命周期(整理)

    说明:此文是自己的总结笔记,主要参考: iOS程序的启动执行顺序 AppDelegate 及 UIViewController 的生命周期 UIView的生命周期 言叶之庭.jpeg 一. iOS程序 ...

  2. nginx配置及HTTPS配置示例

    一.nginx简单配置示例 user www www; worker_processes ; #error_log logs/error.log; #error_log logs/error.log ...

  3. 【Spiral Matrix II】cpp

    题目: Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. ...

  4. C#帮助类

    1.集合操作 // <summary> /// 判断一个集合是否包含某个值 /// </summary> /// <typeparam name="T" ...

  5. dpkg.cfg

  6. 最干净的pyinstaller打包成exe应用程序方法

    在anaconda环境下进行pyinstaller打包后,程序非常大,70行代码打包后有280MB,这是因为会将conda环境携带的库都打包进去导致的.为了获得更纯净的包环境,我们需要安装纯pytho ...

  7. EasyUi DataGrid 请求Url两次问题

    easyui datagrid 1.4 当total为0时,请求两次url问题 框架问题:需要在easyui文件后加修补补丁 /** * The Patch for jQuery EasyUI 1.4 ...

  8. linux备忘录-档案与文件系统的压缩与打包

    知识点 文件扩展名与压缩解压缩工具 .Z -> compress程序压缩的档案 .gz -> gzip程序压缩的档案 .bz2 -> bzip2程序压缩的档案 .tar -> ...

  9. 架构师入门ing

    算法竞赛水平一般,算法工程师估计遥遥无期,准备开始架构方面的学习. 单纯依靠垂直提升硬件性能来提高系统性能的时代已结束,分布式开发的时代实际上早已悄悄地成为了时代的主流. 在一个团队里,架构师充当了技 ...

  10. HDU 4031 Attack (线段树)

    成功袭击次数=所有袭击次数-成功防守次数 需要一个辅助pre来记录上一次袭击成功什么时候,对于每个查询,从上一次袭击成功开始,每隔t更新一次. 感觉这样做最坏时间复杂度是O(n^2),这里 说是O(q ...