z

你没有发现两个字里的blog都不一样嘛 qwq

题目描述--->p2239 螺旋矩阵

看到题,很明显,如果直接模拟的话,复杂度为\(O(n^2)\)过不去.(这个复杂度应该不正确,我不会分析的啊 qwq.

因此我们需要一个比较厉害的方法解决这个题,

前置知识

我们手写一些矩阵,发现我们填的数是会分层的 !.

(同种颜色为一层.)

分层这个东西的话,我也不能具体解释,你可以认为是一圈一圈地填数.

xjb分析

打表!找规律

我们可以手写一个程序,(也可以手写,手写的话会更简单一些.)

模拟一下这个过程.

例如这个程序(话说,打个表我想了半小时? qwq 一定是我太垃圾了

下面的变量\(ceng\)的话,是因为构造出来的矩阵会分层。

void get(int n)
{
int cnt=0,x=1,y=1;
for(R int ceng=1;ceng<=(n+1)/2;ceng++)
{
while(y<=n-ceng+1)
res[x][y++]=++cnt;x++;y--;
while(x<=n-ceng+1)
res[x++][y]=++cnt;x--;y--;
while(y>=ceng)
res[x][y--]=++cnt;y++;x--;
while(x>ceng)
res[x--][y]=++cnt;x++;y++;
}
print();
}

打出来5*5的表是这样的 qwq

开始搬砖找规律.

  1. 第\(1\)行第\(j\)列对应的数就是j
  2. 第n列第\(i\)行对应的为\(n+i-1\)
  3. 第n行第\(j\)列对应的数为$3 \times n-j-1 $
  4. 再度填回第\(1\)列,第\(i\)行我们发现得到的对应数为 \(4 \times n-i-2\)

上面四点是最容易发现的规律,也是我们继续求解的关键.

注意: 如果上面四条规律并没有找到的话,希望大家能自己手推找一下规律.

(PS: 本人开始用6*6的表格找规律,结果第四条规律找错 qwq)

如何填充里层的数?

我们发现17这个位置与16是有关的.而16,又是\(4\times5-4\)

(多打几个表容易发现,第\(2\)行第\(1\)列这个位置的数为\(4 \times n-4\))

直接推导这个\(4 \times n-4\)的话是这样的

看图↓

我们黄色部分可以填充\(n\)个数,绿色部分由于黄色部分占领了一个格子,所以填充个数为\(n-1\)个,同理蓝色部分也只能填充\(n-1\)个数,红色部分由于上面有黄色部分,下面有蓝色部分,只能填充\(n-2\)个数.

总的来说,每一层共可以填充\(4 \times n-4\)个数

然后考虑搞事。

我们将更里层的数减去\(4\times n-4\),得到新的里层数据如下.

这时候你可能会大吼.

“woc!又让我填一遍?”

恍然大悟

我们发现,这样的话,我们又填一次这个矩阵,不过这个矩阵的大小从\(n\)变成了\(n-2\)

(消去了,最左和最右两边.)

而假设我们之前要查找的数的位置为\((4,4)\)就变成了\((3,3)\)

如果是\((3,4)\)就变成了\((2,3)\),

所以说,当我们求内层的时候,所求原数的位置(x,y)就将变成(x-1,y-1).

而对于那些直接满足上面我们发现的规律的数的话,我们可以直接输出.

所以不必考虑这些数的输出怎么办.

最终我们一定会拆到最里层.

以此类推

我们一直拆下去,每次加上的答案就是\(4\times n-4\)。

注意:这个n是在变化的.

因此我们可以码出代码

#include<bits/stdc++.h>
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,x,y,ans;
int main()
{
in(n),in(x),in(y);
//如果刚开始的话x,y就满足四条规律.
//我们会在第一次输出答案,此时ans为0,无影响.
here:;
if(x==1)printf("%d",y+ans);
else if(y==n)printf("%d",n+x-1+ans);
else if(x==n)printf("%d",3*n-y-1+ans);
else if(y==1)printf("%d",4*n-x-2+ans);
else
{
ans+=4*n-4;
x--,y--,n-=2;
goto here;
//这句话达到了递归的效果。
//我们的程序运行到这一步会到达上面的here,即再度执行这些if语句.
}
}

模拟【p2239】 螺旋矩阵的更多相关文章

  1. 洛谷——P2239 螺旋矩阵

    P2239 螺旋矩阵 题目描述 一个n行n列的螺旋矩阵可由如下方法生成: 从矩阵的左上角(第1行第1列)出发,初始时向右移动:如果前方是未曾经过的格子,则继续前进,否则右转:重复上述操作直至经过矩阵中 ...

  2. P2239 螺旋矩阵

    P2239 螺旋矩阵 题解 这题看上去是个暴力,但是你看数据范围啊,暴力会炸 实际上这是一道数学题QWQ 先看看螺旋矩阵是个什么亚子吧 好吧,找找规律 1 2 ... ... ... ... ... ...

  3. Java 第十一届 蓝桥杯 省模拟赛 螺旋矩阵

    螺旋矩阵 题目 问题描述 对于一个 n 行 m 列的表格,我们可以使用螺旋的方式给表格依次填上正整数,我们称填好的表格为一个螺旋矩阵. 例如,一个 4 行 5 列的螺旋矩阵如下: 1 2 3 4 5 ...

  4. 洛谷 P2239 螺旋矩阵(模拟 && 数学)

    嗯... 题目链接:https://www.luogu.org/problem/P2239 这道题首先不能暴力建图,没有简单方法,只有进行进行找规律. AC代码: #include<cstdio ...

  5. P2239螺旋矩阵

    传送 看到这数据范围,显然咱不能暴力直接模拟(二维数组开不下,而且会T掉) 我们目前有两种选择: 1.优化暴力  走这边(jyy tql%%%) 2.数学做法 我们看一下题目中的那个矩阵 我们能不能找 ...

  6. 洛谷P2239 螺旋矩阵

    传送门 分析:将整个矩阵看成 "回" 形状的分层结构,然后进行去层处理,使得要求得 \((i,j)\) 处于最外层,然后再分情况讨论.最外面的一层共有数: $ 4 * n - 4 ...

  7. 【洛谷P2239 螺旋矩阵】

    题目链接 直接看题 一看就很数学 我们不妨来画图 画出几个矩阵,找他们的关系 然后发现 当i==1时,对应的值就是j所对应的值: 当i==n时,所对应的值就是3*n-2-j+1: 当j==1时,所对应 ...

  8. 【模拟】[NOIP2014]螺旋矩阵[c++]

    题目描述 一个n行n列的螺旋矩阵可由如下方法生成: 从矩阵的左上角(第1行第1列)出发,初始时向右移动:如果前方是未曾经过的格子,则继续前进,否则右转:重复上述操作直至经过矩阵中所有格子.根据经过顺序 ...

  9. PAT 1105 Spiral Matrix[模拟][螺旋矩阵][难]

    1105 Spiral Matrix(25 分) This time your job is to fill a sequence of N positive integers into a spir ...

随机推荐

  1. mysql之select查询:练习

    单表查询: 数据查询命令:select 识别要查询的列 from识别要查询的表 select 运算符: + .-.*./. 加减乘除 等于= 不等于!= 或 <> 大于等于>= 小于 ...

  2. Pytest框架介绍

    Pytest框架介绍.安装 pytest是python测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,功能更强大 pytest特征 1:断言提示信 ...

  3. 前端初学者——初探Modernizr.js Modernizr.js笔记

    什么是Modernizr? Modernizr 是一个用来检测浏览器功能支持情况的 JavaScript 库. 目前,通过检验浏览器对一系列测试的处理情况,Modernizr 可以检测18项 CSS3 ...

  4. websocket+nodejs+redis实现消息订阅和发布系统

    其实我很懒,不想打字,代码已上传到码云,请点此处. 有疑问请一下扫描二维码,加我微信:

  5. Python网络编程(weekly summary1)

    网络的目的是什么?     用于信息传输.接受  能把各个点.面.体的信息链接到一起 实现资源的共享 OSI模型:     应用层:提供程序服务     表示层:数据加密.优化.压缩     会话层: ...

  6. 孤荷凌寒自学python第四十三天python 的线程同步之Queue对象

     孤荷凌寒自学python第四十三天python的线程同步之Queue对象 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) Queue对象是直接操作队列池的对象,队列中可以存放多种对象,当然也 ...

  7. 课时34:丰富的else语句以及简洁的with语句

    目录: 一.丰富的else语句 二.简洁的with语句 三.课时34课后习题及答案 *********************** 一.丰富的else语句 ********************** ...

  8. 【现代程序设计】homework-01

    HOMEWORK-01 1) 建立 GitHub 账户, 把课上做的 “最大子数组之和” 程序签入 已完成. 2) 在 cnblogs.com 建立自己的博客. 写博客介绍自己的 GitHub 账户. ...

  9. ajax的多次请求问题

    我们在用ajax请求数据时,可能会遇到一次点击多次触发的可能.(比如说:ajax 的 onreadystatechange 事件就会触发多次:这是因为 onreadystatechange 是一个事件 ...

  10. 【linux】如何解决VMWare上linux虚拟机连不上外网的问题?

    >>>故障现象:虚拟机连接不到外网? >>>故障背景: Centos7.4发行版本: 虚拟机和VM软件都是nat模式: 注意这里默认的VMWare的DHCP服务时开 ...