Problem Description
Alice and Bob are playing a game on an undirected graph with n (n is even) nodes and m edges. Every node i has its own weight Wv, and every edge e has its own weight We.



They take turns to do the following operations. During each operation, either Alice or Bob can take one of the nodes from the graph that haven't been taken before. Alice goes first.



The scoring rule is: One person can get the bonus attached to a node if he/she have choosen that node before. One person can get the bonus attached to a edge if he/she have choosen both node that induced by the edge before.



You can assume Alice and Bob are intelligent enough and do operations optimally, both Alice and Bob's target is maximize their score - opponent's.



What is the final result for Alice - Bob.


 
Input
Muilticases. The first line have two numbers n and m.(1 <= n <= 105, 0<=m<=105) The next line have n numbers from W1 to Wn which Wi is the weight of node i.(|Wi|<=109)



The next m lines, each line have three numbers u, v, w,(1≤u,v≤n,|w|<=109) the first 2 numbers is the two nodes on the edge, and the last one is the weight on the edge. 
 
Output
One line the final result.


 
Sample Input
4 0
9 8 6 5
 
Sample Output
2
题意:
对于一个图。两个人轮流取点。谁取得那个点则获得那个点的价值。而一个人假设取得同一条边的两点。则同一时候也会获得这条边的价值,两人都按最优方案去取。最后输出价值之差
思路:
仅仅要将边分半给两个点就可以,假设两点同一时候在一个人身上,那么边的价值也会加上去,假设两点在两个人身上,那么边的价值会被减去
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <algorithm>
#include <climits>
using namespace std; #define ls 2*i
#define rs 2*i+1
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 100005
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define rank rank1
const int mod = 10007; int n,m;
double a[N]; int main()
{
int i,j,k,x,y;
double w;
while(~scanf("%d%d",&n,&m))
{
for(i = 1; i<=n; i++)
scanf("%lf",&a[i]);
for(i = 1; i<=m; i++)
{
scanf("%d%d%lf",&x,&y,&w);
w=w/2;
a[x]+=w;
a[y]+=w;
}
sort(a+1,a+1+n);
double sum1=0,sum2=0;
for(i = 1; i<=n; i++)
{
if(i%2==0)
sum1+=a[i];
else
sum2+=a[i];
}
printf("%.0f\n",sum1-sum2);
} return 0;
}

HDU4647:Another Graph Game(贪心)的更多相关文章

  1. HDU-4647 Another Graph Game 贪心,博弈

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4647 注意这题两人的决策是想要使得自己的分数与对方的差值最大.. 注意到数据范围,显然是贪心之类的,如 ...

  2. UVA 10720 Graph Construction 贪心+优先队列

    题目链接: 题目 Graph Construction Time limit: 3.000 seconds 问题描述 Graph is a collection of edges E and vert ...

  3. 沈阳网络赛F-Fantastic Graph【贪心】or【网络流】

    "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 F Fantastic Graph(贪心或有源汇上下界网络流)

    https://nanti.jisuanke.com/t/31447 题意 一个二分图,左边N个点,右边M个点,中间K条边,问你是否可以删掉边使得所有点的度数在[L,R]之间 分析 最大流不太会.. ...

  5. HDU 4647 Another Graph Game(贪心)

    题目链接 思路题.看的题解. #include <cstdio> #include <string> #include <cstring> #include < ...

  6. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph (贪心或有源汇上下界网络流)

    "Oh, There is a bipartite graph.""Make it Fantastic."X wants to check whether a ...

  7. CodeForces - 459E Pashmak and Graph[贪心优化dp]

    E. Pashmak and Graph time limit per test 1 second memory limit per test 256 megabytes input standard ...

  8. Contig|scaffold|N50|L50|NG50|贪心算法|de bruiji graph|

    生物信息学 Contig是reads拼成的连续的DNA片段,连续表达一个gene.通过双端测序的contig可确定contig之间的关系得到scaffold,Scaffold是reads拼成的有gap ...

  9. AGC 043 C - Giant Graph SG函数 dp 贪心

    LINK:Giant Graph 神仙题目. 容易发现在图中选择某个点的贡献为\(10^{18\cdot(x+y+z)}\) 这等价于多选一个点多大一点就多乘了一个\(10^{18}\) 所以显然是贪 ...

随机推荐

  1. kvm虚拟机最佳实践系列2-创建KVM及KVM优化

    创建KVM及KVM优化 把KVM优化与KVM创建放在一起,是因为我们创建的KVM是要用在生产环境中,所以基础优化工作是必备的. 创建KVM 创建系统盘, 大小: 操作系统通常都不到10G,所以系统盘2 ...

  2. 如何在natTable表格上添加双击事件

    在项目当中,有时候需要双击表格中的某一行触发一个事件或者一次数据请求,这时候,我们就需要在表格中绑定相关事件,思路实际上很简单,添加一个绑定事件就ok了,那么怎么添加呢?简单实现如下: 1.创建绑定双 ...

  3. xpath测试工具 xpath调试工具

    其实这个工具没什么介绍的了 因为目前有项目中需要到了xpath语法,然后呢,有没有什么好的工具 大部分都是联网的,个人比较喜欢离线的工具包 所以顺手就写了一个小工具来测试xpath语法的正确性 so, ...

  4. JavaScript Promise迷你书(中文版)--再学习

    上次粗翻了一下,感觉没吃透,这次深入体会一下. <script> function getURL(URL) { return new Promise(function(resolve, r ...

  5. 获取父窗口iframe方法

    在页面中,有个iframe,基于这个iframe,弹出了个窗口,这个窗口在关闭的时候需要操作iframe里的元素. 做法是 window.top.document.getElementById(&qu ...

  6. 快速幂取模(当数很大时,相乘long long也会超出的解决办法)

    当几个数连续乘最后取模时,可以将每个数字先取模,最后再取模,即%对于*具有结合律.但是如果当用来取模的数本身就很大,采取上述方法就不行了.这个时候可以借鉴快速幂取模的方法,来达到大数相乘取模的效果. ...

  7. Codeforces 246E - Blood Cousins Return (树上启发式合并)

    246E - Blood Cousins Return 题意 给出一棵家谱树,定义从 u 点向上走 k 步到达的节点为 u 的 k-ancestor,每个节点有名字,名字不唯一.多次查询,给出 u k ...

  8. outlook preview setup

    ow To Show Subject Above/Below Sender In Mail List In Outlook? Normally in the compact view of a mai ...

  9. sql server 性能调优 资源等待之网络I/O

    原文:sql server 性能调优 资源等待之网络I/O 一.概述 与网络I/O相关的等待的主要是ASYNC_NETWORK_IO,是指当sql server返回数据结果集给客户端的时候,会先将结果 ...

  10. asp.net mvc 生成二维码

    生成二维码,帮助类: using Gma.QrCodeNet.Encoding; using Gma.QrCodeNet.Encoding.Windows.Render; using System; ...