二进制前置技能:https://www.cnblogs.com/AKMer/p/9698694.html

题目传送门:http://poj.org/problem?id=1995

题目就是求\(\sum_{i=1}^na[i]^{b[i]}mod\) \(m\)。我们只要会快速求\(a^b\)就行了。

我们可以用二进制拆分思想,把\(a^b\)转化成\(a^{(1010...1)_2}\)之类的。然后根据\(a^{x+y}=a^x*a^y\),我们可以将\(a^b\)转化成\(a^{(10000)_2}*a^{(100)_2}*a^{(1)_2}\)之类的形式。当二进制下这一位为\(1\),我们就把它累乘进答案里。

有因为\(a^{2x}=a^x*a^x\),所以对于每一位表示下\(a^{(100..)_2}\),我们可以通过上一位的平方得来。

所以二进制下有多少位,我们就进行多少次运算。

时间复杂度:\(O(nloga)\)

空间复杂度:\(O(1)\)

代码如下:

#include <cstdio>
using namespace std; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int quick(int x,int y,int m) {
int sum=1;
while(y) {
if(y&1)sum=1ll*sum*x%m;//如果y的二进制当前位置为1,就把x累乘进去
x=1ll*x*x%m;y>>=1;//否则x平方,y右移一位
}
return sum;
} int main() {
int Z=read();
while(Z--) {
int ans=0,m=read(),n=read();
for(int i=1;i<=n;i++) {
int x=read(),y=read();
ans=(ans+quick(x,y,m))%m;//累加求答案
}printf("%d\n",ans);
}
return 0;
}

POJ1995:Raising Modulo Numbers的更多相关文章

  1. POJ 1995:Raising Modulo Numbers 快速幂

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: ...

  2. POJ1995 Raising Modulo Numbers(快速幂)

    POJ1995 Raising Modulo Numbers 计算(A1B1+A2B2+ ... +AHBH)mod M. 快速幂,套模板 /* * Created: 2016年03月30日 23时0 ...

  3. POJ1995 Raising Modulo Numbers

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6373   Accepted: ...

  4. poj1995 Raising Modulo Numbers【高速幂】

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5500   Accepted: ...

  5. POJ:1995-Raising Modulo Numbers(快速幂)

    Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9512 Accepted: 578 ...

  6. 【POJ - 1995】Raising Modulo Numbers(快速幂)

    -->Raising Modulo Numbers Descriptions: 题目一大堆,真没什么用,大致题意 Z M H A1  B1 A2  B2 A3  B3 ......... AH  ...

  7. poj 1995 Raising Modulo Numbers【快速幂】

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5477   Accepted: ...

  8. Raising Modulo Numbers(POJ 1995 快速幂)

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5934   Accepted: ...

  9. poj 1995 Raising Modulo Numbers 题解

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6347   Accepted: ...

随机推荐

  1. Gaby Ivanushka(快排)

    Gaby Ivanushka Once upon a time there lived a tsar that has a daughter — Beautiful Vasilisa. There w ...

  2. H - Funny Car Racing

    H - Funny Car Racing Time Limit:1000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Desc ...

  3. IntelliJ IDEA集成JProfiler,入门教程

    说明: JProfiler是用于分析J2EE软件性能瓶颈并能准确定位到Java类或者方法有效解决性能问题的主流工具,它通常需要与性能测试工具如:LoadRunner配合使用,因为往往只有当系统处于压力 ...

  4. 打包合并多个dll

    复杂项目中会引用大量的第三方dll文件,为了便于管理会尝试把相关打包合并成一个dll文件. 推荐使用ILMerge,如需使用网上自行下载. 使用方法: cd 安装目录 ILmerge /target: ...

  5. MD_STOCK_REQUIREMENTS_LIST_API 取MD04的MRP Element

    [转http://lz357502668.blog.163.com/blog/static/16496743201231941718527/]?MD_STOCK_REQUIREMENTS_LIST_A ...

  6. PhpStorm编辑器

    PhpStorm编辑文字过程中发现其有二种方式, 可以通过按“Insert”键进行转换. 第一种是直接在光标后面修改 第二种是直接在光标处修改 很多编辑器也有类似的输入转换,包括Mac的命令台

  7. LeetCode:零钱兑换【322】【DP】

    LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...

  8. ubuntu14.04 安装pip vitualenv flask

    安装pip: $ apt-get install python-pip$ pip -V #查看版本 确认安装成功 安装完pip后,会发现下载的速度特别慢.按如下修改: $ vim ~/.pip/pip ...

  9. Effective java -- 8 异常

    第五十七条:只针对异常的情况才使用异常应该都有这个意识吧,就像什么抓索引越界什么的,没有必要. 第五十八条:对可恢复情况使用受检查异常,对编程错误使用运行时异常三种可抛的异常:受检的异常(checke ...

  10. 通过套接字(socket)和UDP协议实现网络通信

    UDP---用户数据报协议,是一个简单的面向数据报的运输层协议.(无连接.封包.大小限制.速度快). 一.UDP协议的特点: 将数据及源和目的地封装成数据包中,不需要建立连接. 每个数据报的大小限制在 ...