题目:

Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

代码:

/**
* Definition for a point.
* struct Point {
* int x;
* int y;
* Point() : x(0), y(0) {}
* Point(int a, int b) : x(a), y(b) {}
* };
*/
class Solution {
public:
int maxPoints(vector<Point>& points) {
// least points case
if ( points.size()< ) return points.size();
// search for max points
int global_max_points = ;
map<double, int> slope_counts;
for ( int i=; i<points.size(); ++i )
{
slope_counts.clear();
int same_point = ;
int local_max_point = ;
for ( int j=; j<points.size(); ++j )
{
// the exactly same point
if ( j==i ) continue;
// initial as the same x case
double slope = std::numeric_limits<double>::infinity();
// same point case
if ( points[i].x==points[j].x && points[i].y==points[j].y )
{ same_point++; continue; }
// normal case
if ( points[i].x!=points[j].x )
{ slope = 1.0*(points[i].y - points[j].y) / (points[i].x - points[j].x); }
// increase slope and its counts
slope_counts[slope] += ;
// update local max point
local_max_point = std::max(local_max_point, slope_counts[slope]);
}
// add the num of same point to local max point
local_max_point = local_max_point + same_point + ;
// update global max point
global_max_points = std::max(global_max_points, local_max_point);
}
return global_max_points;
}
};

tips:

以每个点为中心 & 找到其余所有点与该点构成直线中斜率相同的,必然为多点共线的

几个特殊case:

1. 相同点 (保留下来坐标相同的点,最后计算最多共线的点时补上这些相同点的数量)

2. x坐标相等的点 (定义slope为double 无穷大)

3. 每次在更新local_max_point时,不要忘记加上1(即算上该点本身)

===================================

学习一个提高代码效率的技巧,如果线段points[i]~points[j]在最多点的直线上,那么线段points[j]~points[i]也在最多点的直线上,所以j=i+1开始即可。

/**
* Definition for a point.
* struct Point {
* int x;
* int y;
* Point() : x(0), y(0) {}
* Point(int a, int b) : x(a), y(b) {}
* };
*/
class Solution {
public:
int maxPoints(vector<Point>& points) {
// least points case
if ( points.size()< ) return points.size();
// search for max points
int global_max_points = ;
map<double, int> slope_counts;
for ( int i=; i<points.size()-; ++i )
{
slope_counts.clear();
int same_point = ;
int local_max_point = ;
for ( int j=i+; j<points.size(); ++j )
{
// initial as the same x case
double slope = std::numeric_limits<double>::infinity();
// same point case
if ( points[i].x==points[j].x && points[i].y==points[j].y )
{ same_point++; continue; }
// normal case
if ( points[i].x!=points[j].x )
{ slope = 1.0*(points[i].y - points[j].y) / (points[i].x - points[j].x); }
// increase slope and its counts
slope_counts[slope] += ;
// update local max point
local_max_point = std::max(local_max_point, slope_counts[slope]);
}
// add the num of same point to local max point
local_max_point = local_max_point + same_point + ;
// update global max point
global_max_points = std::max(global_max_points, local_max_point);
}
return global_max_points;
}
};

tips:

减少了内层循环的遍历次数,提高了程序运行效率。

=====================================

第二次过这道题,上来想到了正确的思路,但是没有敢肯定;注意samePoints和算上当前点本身。

/**
* Definition for a point.
* struct Point {
* int x;
* int y;
* Point() : x(0), y(0) {}
* Point(int a, int b) : x(a), y(b) {}
* };
*/
class Solution {
public:
int maxPoints(vector<Point>& points) {
if (points.empty()) return ;
map<double, int> slopeCount;
int globalMax = ;
for ( int i=; i<points.size(); ++i )
{
slopeCount.clear();
int samePoints = ;
int x = points[i].x;
int y = points[i].y;
for (int j=i+; j<points.size(); ++j )
{
int xx = points[j].x;
int yy = points[j].y;
if ( xx==x && yy==y )
{
samePoints++;
continue;
}
if ( xx==x )
{
slopeCount[numeric_limits<double>::infinity()]++;
continue;
}
slopeCount[1.0*(y-yy)/(x-xx)]++;
}
// count max
int local = ;
for ( map<double, int>::iterator i=slopeCount.begin(); i!=slopeCount.end(); ++i )
{
local = max(local, i->second);
}
globalMax = max(globalMax,local+samePoints+);
}
return globalMax;
}
};

【Max Points on a Line 】cpp的更多相关文章

  1. 【leetcode】Max Points on a Line

    Max Points on a Line 题目描述: Given n points on a 2D plane, find the maximum number of points that lie ...

  2. 【LeetCode】149. Max Points on a Line

    Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the ...

  3. [LeetCode OJ] Max Points on a Line

    Max Points on a Line Submission Details 27 / 27 test cases passed. Status: Accepted Runtime: 472 ms ...

  4. [LintCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  5. LeetCode: Max Points on a Line 解题报告

    Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the ...

  6. [leetcode]149. Max Points on a Line多点共线

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  7. Max Points on a Line leetcode java

    题目: Given n points on a 2D plane, find the maximum number of points that lie on the same straight li ...

  8. LeetCode(149) Max Points on a Line

    题目 Given n points on a 2D plane, find the maximum number of points that lie on the same straight lin ...

  9. 【leetcode】Max Points on a Line(hard)☆

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

随机推荐

  1. Sublime Text3 + Markdown + 实时预览

    Sublime Text3是一款给力的文本编辑器,通过安装插件可以编辑Markdown文本,在编辑Markdown文本的同时可以实时预览编辑效果. 安装准备: 找到菜单栏:Preferences → ...

  2. 如何计算并测量ABAP及Java代码的环复杂度Cyclomatic complexity

    代码的环复杂度(Cyclomatic complexity,有的地方又翻译成圈复杂度)是一种代码复杂度的衡量标准,在1976年由Thomas J. McCabe, Sr. 提出. 在软件测试的概念里, ...

  3. vuejs样式绑定

    第一种:class的对象绑定,class引用的是一个对象,这个对象的属性显示不显示由变量决定 <style> .activated{ color:red; } </style> ...

  4. Java nio socket与as3 socket(粘包解码)连接的应用实例

    对Java nio socket与as3 socket连接的简单应用 <ignore_js_op>Java nio socket与as3 socket连接的应用实例.rar (9.61 K ...

  5. mac jdk profile 永久的配置

    配置java_home 在MAC中设置JAVA_HOME环境变量 环境变量要再etc目录下的profile文件中配置,这样才是永久的配置. cd /etc vi profile 按 i 键进入写模式 ...

  6. Tomcat8.0.36安装配置

    1.下载tomcat8.0.36 下载地址:http://tomcat.apache.org/download-80.cgi 2.解压 至C:\Program Files\tomcat8下 3.添加系 ...

  7. lincode 680 Split String

    Split String    描述 笔记 数据 评测 Give a string, you can choose to split the string after one character or ...

  8. mybatis中oracle转mysql

    刚来公司实习,遇到的第一个任务就是这个,简单记录一下思路过程.人菜的很,没啥参考价值. 测试时: 将现有的oracle库转为mysql: 用的Navicat自带数据传输功能,简单粗暴 出现的问题: 1 ...

  9. php扩展开发-面向对象

    在zval变量里IS_OBJECT类型使用zend_object_value来保存变量的,我们看一下他的具体结果. typedef struct _zend_object_value { zend_o ...

  10. mysql 安装常用命令,卸载不干净等

    安装mysql apt-get install mysql-server apt-get install mysql-client sudo apt-get install libmysqlclien ...