题目描述

题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量。

原题中还有一个特殊指令M,对于正解并没有什么卵用,

输入输出

第一行一个数T,表示数据组数

对于每组数据,第一行2个整数N,M,

接下来N行每行2个正实数想x,y表示第i只猪的坐标

对于每组数据,输出一行一个数表示最少的抛物线数量

数据范围

N<=18,T<=30

那么N范围只有18,可以想到状压DP,我们可以发现,2点确定一条抛物线y=ax^x+bx,可以开一个二维数组s[i][j]表示经过i点和j点的抛物线经过的猪的状态,在二进制下1表示经过,0表示没有,这里要注意精度问题,a>0的情况排除。

接下来用F[state]表示达到状态state至少需要多少条抛物线,然后N^2得枚举每一条抛物线,状态转移方程为,

F[state|s[i][j]]=min{f[state]+1},这里有个细节优化很关键,就是第一次找到的猪转移后直接break

因为如果继续转移后面的猪,后面也要射第一个点,所以的转移是多余的,可以省下不少时间

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#define Inf 2139062143
#define N 24
using namespace std; double x[N], y[N];
int T, n, m, f[1 << 19], s[N][N]; inline bool judge(double i, double j) {
return (fabs(i - j) < 1e-9);
} inline void work(int i, int j) {
if (i == j) {
s[i][j] = 1 << (i - 1);
return;
} double a = (y[i] * x[j] - y[j] * x[i]) / (x[i] * x[j] * (x[i] - x[j]));
double b = y[i] / x[i] - (y[i] * x[j] - y[j] * x[i]) / (x[j] * (x[i] - x[j]));
if (a >= 0) return; int ts = 0;
for (int g = 1; g <= n; ++g) {
double tmp = a * x[g] * x[g] + b * x[g];
if (judge(tmp, y[g])) ts |= (1 << (g - 1));
} s[i][j] = ts;
} int main() {
freopen("in.txt", "r", stdin);
scanf("%d", &T);
while (T--) {
memset(f, 127, sizeof(f));
memset(s, 0, sizeof(s));
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) {
scanf("%lf%lf", &x[i], &y[i]);
}
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
work(i, j);
f[0] = 0;
for (int i = 0; i < (1 << n) - 1; ++i)
for (int j = 1; j <= n; ++j) {
if (i & (1 << (j - 1))) continue;
for (int k = 1; k <= n; ++k) {
if (i & (1 << (k - 1))) continue;
f[i | s[j][k]] = min(f[i | s[j][k]], f[i] + 1);
}
break;
}
printf("%d\n", f[(1 << n) - 1]);
}
return 0;
}

然后就A了hahaha

[Noip2016]愤怒的小鸟(状压DP)的更多相关文章

  1. NOIP2016愤怒的小鸟 [状压dp]

    愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...

  2. luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)

    由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...

  3. [noip2016]愤怒的小鸟<状压dp+暴搜>

    题目链接:https://vijos.org/p/2008 现在回过头去看去年的考试题,发现都不是太难,至少每道题都有头绪了... 这道题的数据范围是18,这么小,直接暴力呗,跑个暴搜就完了,时间也就 ...

  4. [Luogu P2831] 愤怒的小鸟 (状压DP)

    题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...

  5. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  6. NOIP2016Day2T3愤怒的小鸟(状压dp) O(2^n*n^2)再优化

    看这范围都知道是状压吧... 题目大意就不说了嘿嘿嘿 网上流传的写法复杂度大都是O(2^n*n^2),这个复杂度虽然官方数据可以过,但是在洛谷上会TLE[百度搜出来前几个博客的代码交上去都TLE了], ...

  7. 【题解】P2831 愤怒的小鸟 - 状压dp

    P2831愤怒的小鸟 题目描述 \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以 ...

  8. P2831 愤怒的小鸟 状压dp

    这个题主要是预处理比较复杂,先枚举打每只鸟用的抛物线,然后找是否有一个抛物线经过两只鸟,然后就没了. 题干: 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上 ...

  9. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  10. Noip2016愤怒的小鸟(状压DP)

    题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...

随机推荐

  1. JS在与lua的交互心得

    最近在写一个项目,前端技术使用的是Vue,在与lua的交互过程,是通过一个公共JS,前端调用公共js的方法给lua发送命令,lua接到命令,去执行一些方法,然后又通过回调返回到了前端,由于是第一次写这 ...

  2. springboot利用mail配置包,实现邮件发送

    了解邮件发送与接收的过程: A->S1->S2->B 1.计算机A通过SMTP协议将邮件发送到服务器S1上: 2.服务器S1再发送到服务器S2: 3.计算机B通过POP3协议接收服务 ...

  3. selenium select 标签选中

    public static int SetSelectedIndex(this IWebDriver webdriver, string selector, int selectedIndex) { ...

  4. Movideo SaaS解决方案

    类型: 定制服务 软件包: media solution collateral 联系服务商 产品详情 解决方案 概要 Movideo为媒体客户提供的SaaS解决方案部署在位于全球数据中心的Azure云 ...

  5. Spring Cloud学习路线

    学习本学习路线学习完,大家将会对微服务.Spring Cloud.Docker.Kubernetes有一个系统.全面的认识.通过学习,将能掌握相关的知识体系,并能够投入到项目实战中去. 本学习路线采用 ...

  6. CentOS6.9上安装FreeSWITCH1.6.19

    安装环境:操作系统:[zhi@Freeswitch ~]$ cat /etc/redhat-release CentOS release 6.9 (Final)[zhi@Freeswitch ~]$ ...

  7. ring0 进程隐藏实现

    最近在学习内核编程,记录一下最近的学习笔记. 原理:将当前进程从eprocess结构的链表中删除 无法被! process 0 0 看见 #include "HideProcess.h&qu ...

  8. "COM Surrogate 已停止工作"解决方案(windows7 64位及32位)

    根据图示步骤,将以下文件添加至“数据执行保护”的例外列表中. 64位:C:Windows\SysWOW64\dllhost.exe 32位:C:\Windows\System32\dllhost.ex ...

  9. leetcode: 复杂度

    1. single-number Given an array of integers, every element appears twice except for one. Find that s ...

  10. Vsftpd服务传输文件(转)

    本章节先通过介绍文件传输协议来帮助读者理解FTP协议的用处,安装vsftpd服务程序并逐条分析服务文件的配置参数. 完整演示vsftpd服务匿名访问模式.本地用户模式及虚拟用户模式的配置方法,介绍PA ...