P2155 [SDOI2008]沙拉公主的困惑
\(\color{#0066ff}{ 题目描述 }\)
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
\(\color{#0066ff}{输入格式}\)
第一行为两个整数T,R。R<=\(10^9+10\),T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数N,M,见题目描述 m<=n
\(\color{#0066ff}{输出格式}\)
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
\(\color{#0066ff}{输入样例}\)
1 11
4 2
\(\color{#0066ff}{输出样例}\)
1
\(\color{#0066ff}{数据范围与提示}\)
对于100%的数据,1 < = N , M < = 10000000
\(\color{#0066ff}{ 题解 }\)
这东西看起来可能有点不好想
先考虑\([1,m!]\)的贡献,显然是\(\varphi(m!)\)
这好像不太好求。。
考虑定义
\(\begin{aligned}\varphi(n)=n*\prod_{i=1}^k\frac{p_i-1}{p_i}\end{aligned}\)
好像\(m!\)的质因子就是\(\leq m\)的所有质数啊
这样看来好像简单了不少
考虑在\([m!+1,n!]\)的部分
因为a,b互质,a+b和b一定互质(别问我为啥,gcd的东西qwq)
而且\(n!\)一定是\(m!\)的倍数,那么可以分段
每一段都是\(\varphi(m!)\)个
\(ans=\frac{n!}{m!} \varphi(m!)\)
弄个前缀乘积就行了(记录\(\varphi(i!)\)的ans,具有前缀性质)
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e7 + 10;
int pri[maxn], phi[maxn], tot, fac[maxn];
bool vis[maxn];
int mod;
LL ksm(LL x, LL y) {
LL re = 1LL;
while(y) {
if(y & 1) re = re * x % mod;
x = x * x % mod;
y >>= 1;
}
return re;
}
void predoit() {
fac[1] = 1, phi[1] = 1;
for(int i = 2; i < maxn; i++) {
if(!vis[i]) pri[++tot] = i, phi[i] = 1LL * (i - 1) * ksm(i, mod - 2) % mod;
else phi[i] = 1;
for(int j = 1; j <= tot && (LL)i * pri[j] < maxn; j++) {
vis[i * pri[j]] = true;
if(i % pri[j] == 0) break;
}
phi[i] = 1LL * phi[i] * phi[i - 1] % mod;
fac[i] = 1LL * fac[i - 1] * i % mod;
}
}
int main() {
int T = in();
mod = in();
predoit();
while(T --> 0) {
int n = in(), m = in();
printf("%lld\n", 1LL * fac[n] * phi[m] % mod);
}
return 0;
}
P2155 [SDOI2008]沙拉公主的困惑的更多相关文章
- 洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...
- 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告
P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...
- [bzoj2186] [洛谷P2155] [Sdoi2008] 沙拉公主的困惑
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
随机推荐
- [置顶]
strcpy()与strncpy()的区别
头文件:#include <string.h> strcpy() 函数用来复制字符串,其原型为: char *strcpy(char *dest, const char *src); [参 ...
- 新手编译开发OpenWrt入门教程(自定义固件、ubuntu学习)
转自: http://www.znck007.com/forum.php?mod=viewthread&tid=21571 由于openwrt编译教程资料很多,不同的cpu芯片只需要选择对 ...
- spring Annotation
使用注解替代xml 在前几章的笔记基础上添加使用注解的形式 1.配置applicationContext 添加context schema <?xml version="1.0&quo ...
- 如何解决SSH登录Solaris主机速度慢的问题
SSH登录速度慢可能有多种原因. 1. 与DNS有关 缺省情况下,当客户端用SSH登录solaris服务器时,服务器会试图反向解析客户端的IP 地址(即把IP地址解析成机器名).如果Solaris系统 ...
- 问题:sqlserver有没有类似Oracle的LISTAGG;结果: 灵活运用 SQL SERVER FOR XML PATH
灵活运用 SQL SERVER FOR XML PATH FOR XML PATH 有的人可能知道有的人可能不知道,其实它就是将查询结果集以XML形式展现,有了它我们可以简化我们的查询语句实现一些以前 ...
- 部署和调优 1.3 pureftp部署和优化-1
FTP 是 File Transfe Protocol(文件传输协议)的英文简称,而中文简称为 “文传协议” 用于 Internet 上的控制件的双向传输. 可以访问 www.pureftpd. ...
- oracle数据库部分技巧
由于笔者在操作数据库时,遇到几个以前不太常见的操作,感觉有必要记录一下,如下: 1.查被锁表 SELECT object_name, machine, s.sid, s.serial# FROM ...
- Qt opencv开发环境
在.pro文件中添加 INCLUDEPATH += C:\opencv\build\include\ #头文件路径 C:\opencv\build\include\opencv\ C:\opencv\ ...
- Hash函数和消息摘要算法
一.Hash函数 哈希函数就是能将任意长度的数据映射为固定长度的数据的函数.哈希函数返回的值被叫做哈希值.哈希码.散列,或者直接叫做哈希. 二.消息摘要 将长度不固定的消息(message)作为输 ...
- hibernateTemplate方法使用