\(\color{#0066ff}{ 题目描述 }\)

大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

\(\color{#0066ff}{输入格式}\)

第一行为两个整数T,R。R<=\(10^9+10\),T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数N,M,见题目描述 m<=n

\(\color{#0066ff}{输出格式}\)

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

\(\color{#0066ff}{输入样例}\)

1 11
4 2

\(\color{#0066ff}{输出样例}\)

1

\(\color{#0066ff}{数据范围与提示}\)

对于100%的数据,1 < = N , M < = 10000000

\(\color{#0066ff}{ 题解 }\)

这东西看起来可能有点不好想

先考虑\([1,m!]\)的贡献,显然是\(\varphi(m!)\)

这好像不太好求。。

考虑定义

\(\begin{aligned}\varphi(n)=n*\prod_{i=1}^k\frac{p_i-1}{p_i}\end{aligned}\)

好像\(m!\)的质因子就是\(\leq m\)的所有质数啊

这样看来好像简单了不少

考虑在\([m!+1,n!]\)的部分

因为a,b互质,a+b和b一定互质(别问我为啥,gcd的东西qwq)

而且\(n!\)一定是\(m!\)的倍数,那么可以分段

每一段都是\(\varphi(m!)\)个

\(ans=\frac{n!}{m!} \varphi(m!)\)

弄个前缀乘积就行了(记录\(\varphi(i!)\)的ans,具有前缀性质)

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e7 + 10;
int pri[maxn], phi[maxn], tot, fac[maxn];
bool vis[maxn];
int mod;
LL ksm(LL x, LL y) {
LL re = 1LL;
while(y) {
if(y & 1) re = re * x % mod;
x = x * x % mod;
y >>= 1;
}
return re;
}
void predoit() {
fac[1] = 1, phi[1] = 1;
for(int i = 2; i < maxn; i++) {
if(!vis[i]) pri[++tot] = i, phi[i] = 1LL * (i - 1) * ksm(i, mod - 2) % mod;
else phi[i] = 1;
for(int j = 1; j <= tot && (LL)i * pri[j] < maxn; j++) {
vis[i * pri[j]] = true;
if(i % pri[j] == 0) break;
}
phi[i] = 1LL * phi[i] * phi[i - 1] % mod;
fac[i] = 1LL * fac[i - 1] * i % mod;
}
}
int main() {
int T = in();
mod = in();
predoit();
while(T --> 0) {
int n = in(), m = in();
printf("%lld\n", 1LL * fac[n] * phi[m] % mod);
}
return 0;
}

P2155 [SDOI2008]沙拉公主的困惑的更多相关文章

  1. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  2. 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告

    P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...

  3. [bzoj2186] [洛谷P2155] [Sdoi2008] 沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

  4. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  5. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  6. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  7. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  8. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  9. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

随机推荐

  1. Maven的Snapshot版本与Release版本

    1. Snapshot版本代表不稳定.尚处于开发中的版本 2. Release版本则代表稳定的版本 3. 什么情况下该用SNAPSHOT? 协同开发时,如果A依赖构件B,由于B会更新,B应该使用SNA ...

  2. 基于RFC5321使用ncat发送邮件

    今天和同事学习到的这个方法,学习了,记录一下: [root@localhost ~]# ncat TeamServer.localdomain ESMTP Postfix EHLO l00.win - ...

  3. 2015.2.27 UltraEdit中显示XML结构

    1选择菜单项 "视图"->"显示方式(着色文件类型)"->"XML": 2选择菜单项 "格式"->&q ...

  4. 解决CentOS遇到Qt编译(error: cannot find -lGL)

    笔者CentOS 6.5 64位,安装完成Qt5.5.1.随意新建一个Qt Widgets Application. 结果遇到Qt编译问题,提示信息如下: error: cannot find -lG ...

  5. 1107SQLserver基础--语句、存储过程

    [随堂练习]--查询‘李数’老师教的数学成绩大于80分的学生的信息, 并且人数大于3的话,输出达标:否则输出不达标. 存储过程 --带参数的程序代码块---代表执行命令存储在数据库中,存储代码,没有调 ...

  6. 问题:oracle 字符串转换成日期;结果:[oracle] to_date() 与 to_char() 日期和字符串转换

    to_date("要转换的字符串","转换的格式")   两个参数的格式必须匹配,否则会报错. 即按照第二个参数的格式解释第一个参数. to_char(日期,& ...

  7. leetcode645

    vector<int> findErrorNums(vector<int>& nums) { ; int S[N]; int n = nums.size(); ; i ...

  8. C语言学习笔记--#error 、 #line 和 #pragma 的使用

    1. #error 的用法 (1)#error 是一种预编译器指示字,用于生成一个编译错误消息 (2)用法:#error message //注意:message 不需要用双引号包围 (3)#erro ...

  9. hadoop再次集群搭建(1)-安装系统

    从8月份到现在12月份,中间有四个月的时间没有学习hadoop系统了.其实适应新的环境,到现在一切尘埃落定,就应该静下心来,好好学习一下hadoop以及我之前很想学习的mahout.个人对算法比较感兴 ...

  10. js闭包(三)

    场景一:采用函数引用方式的setTimeout调用 闭包的一个通常的用法是为一个在某一函数执行前先执行的函数提供参数.例如,在web环境中,一个函数作为setTimeout函数调用的第一个参数,是一种 ...