Stochastic Gradient Descent (SGD)

SGD的参数

在使用随机梯度下降(SGD)的学习方法时,一般来说有以下几个可供调节的参数:

  • Learning Rate 学习率
  • Weight Decay 权值衰减
  • Momentum 动量
  • Learning Rate Decay 学习率衰减

再此之中只有第一的参数(Learning Rate)是必须的,其余部分都是为了提高自适应性的参数,也就是说后3个参数不需要时可以设为0。

Learning Rate

学习率决定了权值更新的速度,设置得太大会使结果越过最优值,太小会使下降速度过慢。仅靠人为干预调整参数需要不断修改学习率,因此后面3种参数都是基于自适应的思路提出的解决方案。

wi←wi−η∂E∂wi

Weight decay

在实际运用中,为了避免模型的over-fitting,需要对cost function加入规范项,在SGD中我们加入−ηλwi这一项来对cost function进行规范化。

wi←wi−η∂E∂wi−ηλwi

这个公式的基本思路是减小不重要的参数对结果的影响,而有用的权重则不会受到Weight decay的影响,这种思路与Dropout的思路原理上十分相似。

Link 1
Link 2

Learning Rate Decay

一种提高SGD寻优能力的方法,具体做法是每次迭代减小学习率的大小。

  • initial learning rate η=η0
  • learning rate decay ηd
  • At each iteration s:
η(s)=η01+s⋅ηd

在许多论文中,另一种比较常见的方法是迭代30-50次左右直接对学习率进行操作(η←0.5⋅η)

Momentum

灵感来自于牛顿第一定律,基本思路是为寻优加入了“惯性”的影响,这样一来,当误差曲面中存在平坦区SGD可以一更快的速度学习。

wi←m⋅wi−η∂E∂wi

注意:这里的表示方法并没有统一的规定,这里只是其中一种

Link 1
Link 2
Link 3
Link 4

SGD优缺点

  • 实现简单,当训练样本足够多时优化速度非常快
  • 需要人为调整很多参数,比如学习率,收敛准则等

Averaged Stochastic Gradient Descent (ASGD)

在SGD的基础上计算了权值的平均值。
$$\bar{w}t=\frac{1}{t-t_0}\sum^t{i=t_0+1} w_t$$

ASGD的参数

在SGD的基础上增加参数t0

  • 学习率 η
  • 参数 t0

ASGD优缺点

  • 运算花费和second order stochastic gradient descent (2SGD)一样小。
  • 比SGD的训练速度更为缓慢。
  • t0的设置十分困难

Link 1

3. Conjugate Gradient(共轭梯度法)

介于最速下降法与牛顿法之间的一个方法,它仅仅需要利用一阶导数的信息,克服了GD方法收敛慢的特点。

Link 1

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) (一种拟牛顿算法)

L-BFGS算法比较适合在大规模的数值计算中,具备牛顿法收敛速度快的特点,但不需要牛顿法那样存储Hesse矩阵,因此节省了大量的空间以及计算资源。

Link 1
Link 2
Link 3

应用分析

不同的优化算法有不同的优缺点,适合不同的场合:

  • LBFGS算法在参数的维度比较低(一般指小于10000维)时的效果要比SGD(随机梯度下降)和CG(共轭梯度下降)效果好,特别是带有convolution的模型。
  • 针对高维的参数问题,CG的效果要比另2种好。也就是说一般情况下,SGD的效果要差一些,这种情况在使用GPU加速时情况一样,即在GPU上使用LBFGS和CG时,优化速度明显加快,而SGD算法优化速度提高很小。
  • 在单核处理器上,LBFGS的优势主要是利用参数之间的2阶近视特性来加速优化,而CG则得得益于参数之间的共轭信息,需要计算器Hessian矩阵。

Link 1

Deep Learning 优化方法总结的更多相关文章

  1. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  2. 论文笔记:A Review on Deep Learning Techniques Applied to Semantic Segmentation

    A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Intr ...

  3. Paper List ABOUT Deep Learning

    Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 ...

  4. Deep Learning方向的paper

    转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但 ...

  5. Deep Learning for Information Retrieval

    最近关注了一些Deep Learning在Information Retrieval领域的应用,得益于Deep Model在对文本的表达上展现的优势(比如RNN和CNN),我相信在IR的领域引入Dee ...

  6. Deep Learning基础--参数优化方法

    1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) ...

  7. Deep learning:四十三(用Hessian Free方法训练Deep Network)

    目前,深度网络(Deep Nets)权值训练的主流方法还是梯度下降法(结合BP算法),当然在此之前可以用无监督的方法(比如说RBM,Autoencoder)来预训练参数的权值,而梯度下降法应用在深度网 ...

  8. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  9. 转:浅谈深度学习(Deep Learning)的基本思想和方法

    浅谈深度学习(Deep Learning)的基本思想和方法  参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep ...

随机推荐

  1. Spring MVC 基于URL的映射规则(注解版)

    好几天没有跟进Spring MVC的学习了,之前看了点源码都忘的差不多了.这次就跟着之前的问题,继续总结下Spring MVC中的小知识. 关于SpringMVC的小demo可以参考这里! url-p ...

  2. mysql安装等操作

    CentOS 6.5系统中安装配置MySQL数据库 卸载掉原有mysql rpm -qa | grep mysql // 这个命令就会查看该操作系统上是否已经安装了mysql数据库 rpm -e my ...

  3. Stream流、方法引用

    Stream流.方法引用 Stream流.方法引用 Stream流.方法引用 Stream流.方法引用 Stream流.方法引用 ... ...

  4. TOPOI 测验1320, 问题C: 4410: [CF41D]Pawn 解题报告

    题目链接 题目大意 在一个树阵中按一定走法取一些树,使和最大且被 k+1整除 解题思路 类似一个数塔问题 因为最后的结果要被 k+1 整除,所以可以记录到每一个点  对 k+1 取余结果不同的最优解( ...

  5. 7、python数据类型之集合set

    数据类型之集合setset 不允许重复的无序集合,不能通过下标取值,因为无序1.创建   创建空集合   s ={} 默认类型为字典,所以不是空集合,空集合如下   s = set()   s = { ...

  6. linux开机出现Give root password for maintenance (or type Control-D to continue):解决办法

    修改rc.local后导致 linux开机出现Give root password for maintenance,而且很多系统文件无法修改,之前的rc.local也不能修改了,单用户模式也无法进入 ...

  7. Angular2.0的学习(二)

    第二节课 1.了解路由的基础知识 2.子路由.辅助路由.路由守卫和保护路由 路由守卫: CanActivate:处理导航到某路由的情况 CanDectivate:处理从当前路由离开的情况 Resolv ...

  8. python右键Edit with IDLE

    在windows下试用python,Py文件的右键菜单有个Edit with IDLE,虽然这个ide不是那么功能强大,但是胜在方便.对于脚本语言的一般使用来说是足够了.但是有时候,这个菜单就消失了, ...

  9. 023 Merge k Sorted Lists 合并K个有序链表

    合并K个有序链表,并且作为一个有序链表的形式返回.分析并描述它的复杂度. 详见:https://leetcode.com/problems/merge-k-sorted-lists/descripti ...

  10. 在Scala IDEA for Eclipse或IDEA里程序编译实现与在Spark Shell下的对比(其实就是那么一回事)

    不多说,直接上干货! 比如,我这里拿主成分分析(PCA). 1.主成分分析(PCA)的概念介绍 主成分分析(PCA) 是一种对数据进行旋转变换的统计学方法,其本质是在线性空间中进行一个基变换,使得变换 ...