【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法
原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html
题目描述
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
输入
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
输出
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
样例输入
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
样例输出
2/5
0/1
1/1
4/15
题解
莫队算法
若长度为l的区间内含有某数i个,那么随机选择两个数都为i的概率为(i*(i-1))/(l*(l-1))
所以一段区间内两数相等的概率为∑(cnt[i]*(cnt[i]-1))/(l*(l-1))
先不考虑l*(l-1),设原有某数n个,加1对答案的贡献为(n+1)*n-n*(n-1)=2*n,减1对答案的贡献为(n-1)*(n-2)-n*(n-1)=-(2*n-2)。
然后区间平移得到∑(cnt[i]*(cnt[i]-1)),最后和l*(l-1)求一下gcd,变成分数输出即可。
#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 50010
using namespace std;
typedef long long ll;
struct data
{
int l , r , b , p;
}a[N];
int c[N];
ll ans1[N] , ans2[N] , cnt[N];
ll gcd(ll a , ll b)
{
return b ? gcd(b , a % b) : a;
}
bool cmp(data x , data y)
{
return x.b == y.b ? x.r < y.r : x.b < y.b;
}
int main()
{
int n , m , i , si , lp = 1 , rp = 0 , now = 0;
ll tmp;
scanf("%d%d" , &n , &m);
si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &c[i]);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &a[i].l , &a[i].r) , a[i].b = (a[i].l - 1) / si , a[i].p = i;
sort(a + 1 , a + m + 1 , cmp);
for(i = 1 ; i <= m ; i ++ )
{
while(lp < a[i].l) now -= 2 * cnt[c[lp]] - 2 , cnt[c[lp]] -- , lp ++ ;
while(rp > a[i].r) now -= 2 * cnt[c[rp]] - 2 , cnt[c[rp]] -- , rp -- ;
while(lp > a[i].l) lp -- , now += 2 * cnt[c[lp]] , cnt[c[lp]] ++ ;
while(rp < a[i].r) rp ++ , now += 2 * cnt[c[rp]] , cnt[c[rp]] ++ ;
ans1[a[i].p] = now , ans2[a[i].p] = (ll)(a[i].r - a[i].l + 1) * (a[i].r - a[i].l);
}
for(i = 1 ; i <= m ; i ++ ) tmp = gcd(ans1[i] , ans2[i]) , printf("%lld/%lld\n" , ans1[i] / tmp , ans2[i] / tmp);
return 0;
}
【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法的更多相关文章
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3577 Solved: 1652[Subm ...
- [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 10299 Solved: 4685[Sub ...
- [bzoj2038][2009国家集训队]小Z的袜子(hose)——莫队算法
Brief Description 给定一个序列,您需要处理m个询问,每个询问形如[l,r],您需要回答在区间[l,r]中任意选取两个数相同的概率. Algorithm Design 莫队算法入门题目 ...
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法
要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- bzoj2038: [2009国家集训队]小Z的袜子(hose) [莫队]
Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...
- BZOJ2038[2009国家集训队]小Z的袜子(hose)——莫队
题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜子从1到N编号 ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
随机推荐
- 1.Netty入门
Netty入门 1.Netty介绍 (1)百度百科介绍: Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络 ...
- Java分享笔记:泛型类的定义与使用
当类中要操作的引用数据类型不确定时,可以定义泛型类完成扩展.下面是程序演示. package packB; class Student { //定义学生类 public String st = &qu ...
- 【杂题总汇】UVa-10618 Tango Tango Insurrection
[UVa-10618] Tango Tango Insurrection ◇ 题目 +vjudge 链接+ (以下选自<算法竞赛入门经典>-刘汝佳,有删改) <题目描述> 你想 ...
- Linux添加swap分区
swap分区的作用为当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用,那些被释放的空间可能来自一些很长时间没有什么操作的程序,这些被释放的空间被临时保存到S ...
- 深入理解java虚拟机学习笔记(二)垃圾回收策略
上篇文章介绍了JVM内存模型的相关知识,其实还有些内容可以更深入的介绍下,比如运行时常量池的动态插入,直接内存等,后期抽空再完善下上篇博客,今天来介绍下JVM中的一些垃圾回收策略. 一. ...
- SpringMVC系列一
首先介绍一下SpringMVC的执行流程:如图 1.用户在客户端发送请求,经过前端控制器DispatcherServlet,请求处理器处理,返回ModelAndView返回结果到前端控制器: 2.前端 ...
- 利用python在windows环境下爬取赶集网工作信息。
主要用到了多进程和多线程的知识,最后结果保存成csv文件格式,如有需要可改成数据库版本. 对用到的库做下简要介绍,具体请参考官方文档: xpinyin.Pinyin:将输入的中文转成拼音 concur ...
- nginx配置安装
先安装pcrepcre作用是让Nginx支持Rewrite功能下载地址:https://sourceforge.net/projects/pcre/files/pcre/,选择最新版本进行下载下载之后 ...
- 中通快递股份有限公司.net高级面试题
中通快递分布式技术开发 gc垃圾回收原理 .net中,托管代码的内存管理是自动的,由GC进行管理,而对于非托管代码,则需要.net手动处理 CLR运行时,内存分为:托管堆和栈,其中栈用于存储值类型 ...
- OracleWeblogic12C安装教程
一,安装WebLogic Server 1. 双击exe安装文件 2.准备安装文件 3. 生成向导序列 4. 选择安装路径 5. 开始安装 经过以上步骤,weblogic已经成功安装到了你的电脑上,但 ...