【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法
原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html
题目描述
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
输入
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
输出
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
样例输入
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
样例输出
2/5
0/1
1/1
4/15
题解
莫队算法
若长度为l的区间内含有某数i个,那么随机选择两个数都为i的概率为(i*(i-1))/(l*(l-1))
所以一段区间内两数相等的概率为∑(cnt[i]*(cnt[i]-1))/(l*(l-1))
先不考虑l*(l-1),设原有某数n个,加1对答案的贡献为(n+1)*n-n*(n-1)=2*n,减1对答案的贡献为(n-1)*(n-2)-n*(n-1)=-(2*n-2)。
然后区间平移得到∑(cnt[i]*(cnt[i]-1)),最后和l*(l-1)求一下gcd,变成分数输出即可。
#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 50010
using namespace std;
typedef long long ll;
struct data
{
int l , r , b , p;
}a[N];
int c[N];
ll ans1[N] , ans2[N] , cnt[N];
ll gcd(ll a , ll b)
{
return b ? gcd(b , a % b) : a;
}
bool cmp(data x , data y)
{
return x.b == y.b ? x.r < y.r : x.b < y.b;
}
int main()
{
int n , m , i , si , lp = 1 , rp = 0 , now = 0;
ll tmp;
scanf("%d%d" , &n , &m);
si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &c[i]);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &a[i].l , &a[i].r) , a[i].b = (a[i].l - 1) / si , a[i].p = i;
sort(a + 1 , a + m + 1 , cmp);
for(i = 1 ; i <= m ; i ++ )
{
while(lp < a[i].l) now -= 2 * cnt[c[lp]] - 2 , cnt[c[lp]] -- , lp ++ ;
while(rp > a[i].r) now -= 2 * cnt[c[rp]] - 2 , cnt[c[rp]] -- , rp -- ;
while(lp > a[i].l) lp -- , now += 2 * cnt[c[lp]] , cnt[c[lp]] ++ ;
while(rp < a[i].r) rp ++ , now += 2 * cnt[c[rp]] , cnt[c[rp]] ++ ;
ans1[a[i].p] = now , ans2[a[i].p] = (ll)(a[i].r - a[i].l + 1) * (a[i].r - a[i].l);
}
for(i = 1 ; i <= m ; i ++ ) tmp = gcd(ans1[i] , ans2[i]) , printf("%lld/%lld\n" , ans1[i] / tmp , ans2[i] / tmp);
return 0;
}
【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法的更多相关文章
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3577 Solved: 1652[Subm ...
- [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 10299 Solved: 4685[Sub ...
- [bzoj2038][2009国家集训队]小Z的袜子(hose)——莫队算法
Brief Description 给定一个序列,您需要处理m个询问,每个询问形如[l,r],您需要回答在区间[l,r]中任意选取两个数相同的概率. Algorithm Design 莫队算法入门题目 ...
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法
要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- bzoj2038: [2009国家集训队]小Z的袜子(hose) [莫队]
Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...
- BZOJ2038[2009国家集训队]小Z的袜子(hose)——莫队
题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜子从1到N编号 ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
随机推荐
- ethereum(以太坊)(十)--函数修饰符
pragma solidity ^0.4.0; contract modifierTest{ uint public v1; uint constant v2 =10; //uint constant ...
- redis源代码结构解析
看了黄建宏老师的<Redis设计与实现>,对redis的部分实现有了一个简明的认识: 之前面试的时候被问到了这部分的内容,没有关注,好在还有时间,就把Redis的源码看了一遍. Redis ...
- 【PHP项目】伪静态规则
伪静态规则写法RewriteRule-htaccess详细语法使用 2016年03月30日 16:53:59 阅读数:20340 伪静态实际上是利用php把当前地址解析成另一种方法来访问网站,要学伪静 ...
- ADSL_自动拨号源码(Delphi),已经测试通过
下载地址: http://files.cnblogs.com/lwm8246/ADSL_%E8%87%AA%E5%8A%A8%E6%8B%A8%E5%8F%B7.rar
- python——matplotlib图像的基本处理
1.绘制图像中的点和线 from PIL import Image from pylab import * im = array(Image.open('E:\Python\meinv.jpg')) ...
- javascript的js调用
本来从一开始接触编程开始,自己就一直写后端,但是对于前端真的不会,但是没办法呀,公司要做,所以,好吧,开始了写一写简单的javascript的内容其中,在xxx.jsp页面中出现了这个 <a c ...
- PHP.TP框架下商品项目的优化3-php封装下拉框函数
php封装下拉框函数 因为在项目中会经常使用到下拉框,所以根据一个表中的数据制作下拉框函数,以便调用 //使用一个表的数据做下拉框函数 function buildSelect($tableName, ...
- CSS计数器(自定义列表)Demo
html <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <ti ...
- Dragger 2遇到的坑 Dragger2详解 Dragger2学习最好的资料
我是曹新雨,我为自己代言.现在的菜鸟,3年以后我就是大神.为自己加油.微信:aycaoxinyu Dragger2是什么,我就不再说了.资料一堆,而且里面的注解什么意思,我推荐两篇文章,这两篇都是我精 ...
- 《Cracking the Coding Interview》——第17章:普通题——题目14
2014-04-29 00:20 题目:给定一个长字符串,和一个词典.如果允许你将长串分割成若干个片段,可能会存在某些片段在词典里查不到,有些则查得到.请设计算法进行分词,使得查不到的片段个数最少. ...