题目大意:

给定三角形的三点坐标

判断在其内部包含多少个整点

题解及讲解

皮克定理

多边形面积s = 其内部整点in + 其边上整点li / 2 - 1

那么求内部整点就是 in = s + 1 - li / 2

网格中两格点(整点)间经过的格点(整点)数 即边上整点

li +1=两点横向和纵向距离的最大公约数

//求线段ab之间的整点数
int lineSeg(P a,P b) {
int dx=abs(a.x-b.x), dy=abs(a.y-b.y);
if(dx== && dy==) return ;
return gcd(dx,dy)-;
}
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
using namespace std; double eps=1e-;
double add(double a,double b) {
if(abs(a+b)<eps*(abs(a)+abs(b))) return ;
return a+b;
}
struct P {
double x,y;
P(){};
P(double _x,double _y):x(_x),y(_y){};
P operator - (P p) {
return P(add(x,-p.x),add(y,-p.y)); }
P operator + (P p) {
return P(add(x,p.x),add(y,p.y)); }
P operator * (double d) {
return P(x*d,y*d); }
double dot (P p) {
return add(x*p.x,y*p.y); }
double det (P p) {
return add(x*p.y,-y*p.x); }
}a,b,c;
double area(P a,P b,P c) {
return abs((a-c).det(b-c))/;
}
int gcd(int a,int b) {
while(b) {
int t=a%b;
a=b; b=t;
} return a;
}
//求线段ab之间的整点数
int lineSeg(P a,P b) {
int dx=abs(a.x-b.x), dy=abs(a.y-b.y);
if(dx== && dy==) return ;
return gcd(dx,dy)-;
} int main()
{
while(~scanf("%lf%lf%lf%lf%lf%lf"
,&a.x,&a.y,&b.x,&b.y,&c.x,&c.y)) {
if(a.x==a.y && b.x==b.y && c.x==c.y
&& a.x==b.x && b.x==c.x && c.x==) break;
int s=area(a,b,c);
int li=lineSeg(a,b)+lineSeg(a,c)+lineSeg(b,c)+;
// +3 是 加上三角形的三个顶点
printf("%d\n",s+-li/); /// 皮克定理
} return ;
}

POJ 2954 /// 皮克定理+叉积求三角形面积的更多相关文章

  1. hdu 4709:Herding(叉积求三角形面积+枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  2. Area POJ - 1265 -皮克定理-叉积

    Area POJ - 1265 皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2, 其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积. ...

  3. POJ - 1654 利用叉积求三角形面积 去 间接求多边形面积

    题意:在一个平面直角坐标系,一个点总是从原点出发,但是每次移动只能移动8个方向的中的一个并且每次移动距离只有1和√2这两种情况,最后一定会回到原点(以字母5结束),请你计算这个点所画出图形的面积 题解 ...

  4. hdu 2036:改革春风吹满地(叉积求凸多边形面积)

    改革春风吹满地 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  6. TZOJ 2519 Regetni(N个点求三角形面积为整数总数)

    描述 Background Hello Earthling. We're from the planet Regetni and need your help to make lots of mone ...

  7. Maximal Area Quadrilateral CodeForces - 340B || 三点坐标求三角形面积

    Maximal Area Quadrilateral CodeForces - 340B 三点坐标求三角形面积(可以带正负,表示向量/点的不同相对位置): http://www.cnblogs.com ...

  8. Area---poj1265(皮克定理+多边形求面积)

    题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...

  9. POJ 1265 /// 皮克定理+多边形边上整点数+多边形面积

    题目大意: 默认从零点开始 给定n次x y上的移动距离 组成一个n边形(可能为凹多边形) 输出其 内部整点数 边上整点数 面积 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 ...

随机推荐

  1. cucumber:extentreports集成报告

    extentreports 测试报告 只支持java..Net 先在pom.xml文件中加入包引用 <!-- report--> <dependency> <groupI ...

  2. 39 Ubuntu下配置python的vscode开发环境

    0 引言 最近想在ubuntu下搞深度学习,首先配置了python的vscode开发环境.在配置python时,选择了Anaconda3.x,保证了其相对于系统python2.x的独立性.另外,vsc ...

  3. web前端开发2018年12月找工作总结

    2018年的冬天额外的冷,由内致外... 作为一名刚刚踏入社会的实习生,可谓是狠狠的体验了一把什么叫社会(同时也感叹父母赚钱真的很不容易) 前几天看见这样一句话"如果你不知道社会的辛苦,要么 ...

  4. 虚拟IP---Linux下一个网卡配置多个IP

    转:http://blog.csdn.net/turkeyzhou/article/details/16971225 Linux下配置网卡ip别名何谓ip别名?用windows的话说,就是为一个网卡配 ...

  5. C#-Api:身份证识别

    ylbtech-C#-Api:身份证识别 通过POST上传base64格式的图片内容,可识别二代身份证.驾照.行驶证.军官证.中华人民共和国往来港澳通行证.台湾居民往来大陆通行证.大陆居民往来台湾通行 ...

  6. 关于Mysql分区和分表

    [分区概念]分区就是把一张表的数据按照一定的规则分成多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上.分区后表还是一张表.分区根据一定的规则把数据文件和索引文件进行了分割,还多出了一个.pa ...

  7. word 文献标题自动编号

    来自:word中自动编号和多级编号的使用 选中标题或段落,点击鼠标右键,在编号菜单内选择适合的自动编号样式.或者在窗口上方的“开始”选项卡中选择编号样式.如果对已选的编号样式不满意,可以照以上方法直接 ...

  8. 运行mybatis项目,运行测试类,点击test后,出现Cannot start compilation: the output path is not specified for module "前......

    Cannot start compilation: the output path is not specified for module "前 后来发现是在pom.xml右击,有个+号,把 ...

  9. IntelliJ IDEA(的springboot项目)环境准备(配置maven和jdk)

    1.配置maven .使用自己电脑上装的maven版本,而非默认的.(方法一) (1)选择configure--Settings (2)搜索maven,配置3.6.2版本的maven.注意:将mave ...

  10. Python服务端工程师就业面试指导✍✍✍

    Python服务端工程师就业面试指导  整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时 ...