Python实现人工神经网络逼近股票价格
1.基本数据绘制成图
数据有15天股票的开盘价格和收盘价格,可以通过比较当天开盘价格和收盘价格的大小来判断当天股票价格的涨跌情况,红色表示涨,绿色表示跌,测试代码如下:
# encoding:utf-8 import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
date = np.linspace(1, 15, 15)
# 当天的收盘价格
endPrice = np.array([2511.90,2538.26,2510.68,2591.66,2732.98,2701.69,2701.29,2678.67,2726.50,2681.50,2739.17,2715.07,2823.58,2864.90,2919.08]
)
# 当天的开盘价格
beginPrice = np.array([2438.71,2500.88,2534.95,2512.52,2594.04,2743.26,2697.47,2695.24,2678.23,2722.13,2674.93,2744.13,2717.46,2832.73,2877.40])
print(date) # 打印日期
plt.figure()
for i in range(0,15):
# 通过循环遍历数据画出柱状图
dateOne = np.zeros([2])
dateOne[0] = i
dateOne[1] = i
print(dateOne)
priceOne = np.zeros([2])
priceOne[0] = beginPrice[i]
priceOne[1] = endPrice[i]
if endPrice[i] > beginPrice[i]:
# 如果收盘价格大于开盘价格说明股票上涨 用红色表示 lw为线条粗细
plt.plot(dateOne, priceOne,'r',lw=8)
else:
# 如果收盘价格小于开盘价格说明股票下跌 用绿色表示 lw为线条粗细
plt.plot(dateOne, priceOne,'g',lw=5)
plt.show()
运行后的图如下:
2.人工神经网络进行预测
建立一个简单的三层人工神经网络。
循环的终止条件可以为预先设定的循环次数或者与真实值的差异百分比
功能实现,完整的测试代码如下:
# encoding:utf-8 import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
date = np.linspace(1, 15, 15)
# 当天的收盘价格
endPrice = np.array([2511.90,2538.26,2510.68,2591.66,2732.98,2701.69,2701.29,2678.67,2726.50,2681.50,2739.17,2715.07,2823.58,2864.90,2919.08]
)
# 当天的开盘价格
beginPrice = np.array([2438.71,2500.88,2534.95,2512.52,2594.04,2743.26,2697.47,2695.24,2678.23,2722.13,2674.93,2744.13,2717.46,2832.73,2877.40])
print(date) # 打印日期
plt.figure()
for i in range(0,15):
# 通过循环遍历数据画出柱状图
dateOne = np.zeros([2])
dateOne[0] = i
dateOne[1] = i
print(dateOne)
priceOne = np.zeros([2])
priceOne[0] = beginPrice[i]
priceOne[1] = endPrice[i]
if endPrice[i] > beginPrice[i]:
# 如果收盘价格大于开盘价格说明股票上涨 用红色表示 lw为线条粗细
plt.plot(dateOne, priceOne,'r',lw=8)
else:
# 如果收盘价格小于开盘价格说明股票下跌 用绿色表示 lw为线条粗细
plt.plot(dateOne, priceOne,'g',lw=5)
# plt.show()
# A(15x1)*w1(1x10)+b1(1*10) = B(15x10)
# B(15x10)*w2(10x1)+b2(15x1) = C(15x1)
# 1 A B C
dateNormal = np.zeros([15,1])
priceNormal = np.zeros([15,1])
# 日期和价格进行归一化处理
for i in range(0, 15):
dateNormal[i, 0] = i/14.0
priceNormal[i, 0] = endPrice[i]/3000.0
print(dateNormal)
print(priceNormal) x = tf.placeholder(tf.float32, [None, 1]) # 表明是N行1列的
y = tf.placeholder(tf.float32, [None, 1]) # 表明是N行1列的 # B
w1 = tf.Variable(tf.random_uniform([1, 10], 0, 1)) # 可变值 可以通过误差修改值 范围0-1
b1 = tf.Variable(tf.zeros([1, 10])) # 可变值 可以通过误差修改值
wb1 = tf.matmul(x, w1)+b1
layer1 = tf.nn.relu(wb1) # 激励函数 映射成另一个值
# 第一二层完毕 # C
w2 = tf.Variable(tf.random_uniform([10, 1], 0, 1)) # 可变值 可以通过误差修改值 范围0-1
b2 = tf.Variable(tf.zeros([15, 1]))
wb2 = tf.matmul(layer1, w2)+b2
layer2 = tf.nn.relu(wb2) # 激励函数 映射成另一个值
# 第二三层完毕 # 误差用loss表示 实际是一个标准差
loss = tf.reduce_mean(tf.square(y-layer2)) # y 真实 layer2 计算
# 每次调整的步长 梯度下降0.1 目的是缩小loss减小真实值与误差值的差异
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 初始化
for i in range(0, 10000): # 训练次数为10000
sess.run(train_step, feed_dict={x: dateNormal, y: priceNormal})
# w1w2 b1b2 A + wb -->layer2
pred = sess.run(layer2, feed_dict={x: dateNormal})
predPrice = np.zeros([15, 1]) # 预测结果
for i in range(0, 15): # 还原数据需要*3000
predPrice[i, 0] = (pred*3000)[i, 0]
plt.plot(date, predPrice, 'b', lw=1)
plt.show()
运行结果如下:(图中蓝色的线表示股票的预测值)
Python实现人工神经网络逼近股票价格的更多相关文章
- 吴裕雄 python 机器学习——人工神经网络感知机学习算法的应用
import numpy as np from matplotlib import pyplot as plt from sklearn import neighbors, datasets from ...
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- python大战机器学习——人工神经网络
人工神经网络是有一系列简单的单元相互紧密联系构成的,每个单元有一定数量的实数输入和唯一的实数输出.神经网络的一个重要的用途就是接受和处理传感器产生的复杂的输入并进行自适应性的学习,是一种模式匹配算法, ...
- 人工神经网络,支持任意数量隐藏层,多层隐藏层,python代码分享
http://www.cnblogs.com/bambipai/p/7922981.html------误差逆传播算法讲解 人工神经网络包含多种不同的神经网络,此处的代码建立的是多层感知器网络,代码以 ...
- 用BP人工神经网络识别手写数字
http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb5 ...
- [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...
- C#中调用Matlab人工神经网络算法实现手写数字识别
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化 投影 矩阵 目标定位 Matlab 手写数字图像识别简介: 手写 ...
- 开源的c语言人工神经网络计算库 FANN
这年头机器学习非常的火,神经网络算是机器学习算法中的比较重要的一种.这段时间我也花了些功夫,学了点皮毛,顺便做点学习笔记. 介绍人工神经网络的基本理论的教科书很多.我正在看的是蒋宗礼教授写的<人 ...
- 人工神经网络(Artificial Neural Networks)
人工神经网络的产生一定程度上受生物学的启发,因为生物的学习系统是由相互连接的神经元相互连接的神经元组成的复杂网络.而人工神经网络跟这个差不多,它是一系列简单的单元相互密集连接而成的.其中每个单元有一定 ...
随机推荐
- 2,Hadoop部署
前期准备 (1)JAVA_HOME:因为Hadoop的配置文件中依赖 $JAVA_HOME.修改/etc/profile文件. (2)hostname:修改主机名,方便管理./etc/sysconfi ...
- search(0)- 企业搜索,写在前面
计划研究一下搜索search,然后写个学习过程系列博客.开动之前先说说学习搜索的目的:不是想开发个什么搜索引擎,而是想用现成的搜索引擎在传统信息系统中引进搜索的概念和方法.对我来说,传统的管理系统le ...
- 解决MySql客户端秒退(找不到my.ini)
问题说明(环境:windows7,MySql8.0) 今天安装好MySql后启动MySql服务-->启动服务都失败的就不要往下看了,自行百度解决. 打开客户端秒退,但在cmd中是可以使用数据库的 ...
- Ubuntu安装软件时报 Unable to acquire the dpkg frontend lock解决方案
解决方案如下: 对于以上内容,请等待过程完成.如果这没有发生,请在终端中运行: sudo killall apt apt-get 如果以上都不起作用,请删除锁定文件.在终端中运行: sudo rm / ...
- 经济学人精读笔记7:动乱当道,你还想买LV吗?
2020/2/24 经济学人精读笔记7:动乱当道,你还想买LV吗? 标签(空格分隔): 经济学人 Part 1 Luxury goods A tale of two handbags Purveyor ...
- setter&getter
let _age = 4 class Animal { construct (type){ this.type = type } get age(){ return _age } set age(va ...
- 37.Python自定义过滤器
自定义模板过滤器 1.首先在某个app中,创建一个python包,叫做"templatetags",注意,这个包的名字一定要是"templatetags",否者 ...
- Vim 全选命令
ggVG稍微解释一下上面的命令gg 让光标移到首行,在vim才有效,vi中无效V 是进入Visual(可视)模式G 光标移到最后一行选中内容以后就可以其他的操作了,比如:d 删除选中内容y ...
- P1339 [USACO09OCT]热浪Heat Wave(SPFA)
-------------------------------------- 农夫约翰再显神威,双向热浪,双倍数组 (双倍大小,否则RE) ------------------------------ ...
- [Python]PyCharm中%matplotlib inline报错
%matplotlib作用 是在使用jupyter notebook 或者 jupyter qtconsole的时候,才会经常用到%matplotlib,也就是说那一份代码可能就是别人使用jupyte ...