BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
解题思路
看到计数想容斥--\(from\) \(shadowice1984\)大爷。首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进去,那我们就减掉\(n-2\)个公司的生成树个数,然后发现少算了\(n-3\)的生成树个数...以此类推。所以就容斥一下,然后用矩阵树定理就行了。时间复杂度\(O(2^(n-1)*n^3*log(MOD)\)。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define int long long
using namespace std;
const int MAXN = 18;
const int MOD = 1e9+7;
typedef long long LL;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
struct Edge{
int u,v;
}edge[MAXN][MAXN*MAXN/2];
int m[MAXN],n,ans;
int f[MAXN][MAXN];
inline void add(int x,int y){
f[x][x]++;f[y][y]++;f[x][y]--;f[y][x]--;
}
inline int Matrix_Tree(){
int t,ret=1;
for(int i=1;i<n;i++){
for(int j=i+1;j<n;j++)
while(f[j][i]){
t=f[i][i]/f[j][i];
for(int k=i;k<n;k++) f[i][k]=(f[i][k]-(LL)t*f[j][k]%MOD+MOD)%MOD;
ret=-ret;swap(f[i],f[j]);
}
ret=(LL)ret*f[i][i]%MOD;ret=(ret+MOD)%MOD;
}
return (ret+MOD)%MOD;
}
signed main(){
n=rd();
for(int i=1;i<n;i++){
m[i]=rd();
for(int j=1;j<=m[i];j++)
edge[i][j].u=rd(),edge[i][j].v=rd();
}
for(int i=(1<<(n-1))-1;i;i--){
memset(f,0,sizeof(f));
for(int j=1;j<=n;j++)if((1<<(j-1))&i)
for(int k=1;k<=m[j];k++)
add(edge[j][k].u,edge[j][k].v);
ans+=((n-__builtin_popcount(i))&1)?(Matrix_Tree()):(-Matrix_Tree());
ans=(ans+MOD)%MOD;
}
printf("%lld",ans);
return 0;
}
BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)的更多相关文章
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡
Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...
- ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- 【BZOJ】4596: [Shoi2016]黑暗前的幻想乡
[题意]给定n个点的无向完全图,有n-1个公司各自分管一部分路,要求所有公司都有修路的生成树数.n<=17. [算法]容斥原理+生成树计数(矩阵树定理) [题解]每个生成树方案是一个公司有无修路 ...
- 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理
题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...
随机推荐
- css 垂直居中、水平居中
在父元素.子元素未知的情况下居中有两种方法: 第一种方法: .partent{ display:flex; justify-content:center; align-items:center; } ...
- 【leetcode】970. Powerful Integers
题目如下: Given two non-negative integers x and y, an integer is powerful if it is equal to x^i + y^j fo ...
- XML解析方式有哪些?
1.DOM:要求解析器吧整个XML文档装载到内存,并解析成一个Document对象. (1).优点:元素与元素之间保留结构关系,故可以进行增删改查操作. (2).缺点:XML文档过大,可能出现内存溢出 ...
- 高级运维(五):构建memcached服务、LNMP+memcached、使用Tomcat设置Session、Tomcat实现session共享
一.构建memcached服务 目标: 本案例要求先快速搭建好一台memcached服务器,并对memcached进行简单的添.删.改.查操作: 1> 安装memcached软件,并启动服务d ...
- Python 爬取各大代理IP网站(元类封装)
import requests from pyquery import PyQuery as pq base_headers = { 'User-Agent': 'Mozilla/5.0 (Windo ...
- (抓)ubuntu下安装mysql --- 我主要参考的文章
转:http://cycnet.blog.51cto.com/117809/812625 现在的软件越来越好安装,尤其是在ubuntu下安装软件,更是没有技巧,只需要在联网的情况下使用apt-get ...
- Java-Class-FC:java.lang.StringBuilder
ylbtech-Java-Class-FC:java.lang.StringBuilder 1.返回顶部 2.返回顶部 1. @Override public String toString() ...
- RabbitMQ使用(一)
1. 安装与使用 1. 激活 RabbitMQ's Management Plugin (前面跟绝对路径) "D:\娱乐\rabbitmq_server-3.6.5\sbin\rabbitm ...
- 关于scroll实现侧边导航栏
需求为一个简单的scroll效果,侧边选项卡跟随屏幕向下拖动变颜色的.点击侧边选项卡,跳转到相应模块. 索性上网找了一下类似的效果.附带源码地址 https://blog.csdn.net/drea ...
- JavaScript深浅拷贝区别
分享一篇自己关注的微信订阅号(前端大全)文章:JavaScript浅拷贝与深拷贝 作者:浪里行舟 https://github.com/ljianshu/Blog/issues/5 这里很详细的讲解了 ...