传送门

解题思路

  看到计数想容斥--\(from\) \(shadowice1984\)大爷。首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进去,那我们就减掉\(n-2\)个公司的生成树个数,然后发现少算了\(n-3\)的生成树个数...以此类推。所以就容斥一下,然后用矩阵树定理就行了。时间复杂度\(O(2^(n-1)*n^3*log(MOD)\)。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define int long long using namespace std;
const int MAXN = 18;
const int MOD = 1e9+7;
typedef long long LL; inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
} struct Edge{
int u,v;
}edge[MAXN][MAXN*MAXN/2]; int m[MAXN],n,ans;
int f[MAXN][MAXN]; inline void add(int x,int y){
f[x][x]++;f[y][y]++;f[x][y]--;f[y][x]--;
} inline int Matrix_Tree(){
int t,ret=1;
for(int i=1;i<n;i++){
for(int j=i+1;j<n;j++)
while(f[j][i]){
t=f[i][i]/f[j][i];
for(int k=i;k<n;k++) f[i][k]=(f[i][k]-(LL)t*f[j][k]%MOD+MOD)%MOD;
ret=-ret;swap(f[i],f[j]);
}
ret=(LL)ret*f[i][i]%MOD;ret=(ret+MOD)%MOD;
}
return (ret+MOD)%MOD;
} signed main(){
n=rd();
for(int i=1;i<n;i++){
m[i]=rd();
for(int j=1;j<=m[i];j++)
edge[i][j].u=rd(),edge[i][j].v=rd();
}
for(int i=(1<<(n-1))-1;i;i--){
memset(f,0,sizeof(f));
for(int j=1;j<=n;j++)if((1<<(j-1))&i)
for(int k=1;k<=m[j];k++)
add(edge[j][k].u,edge[j][k].v);
ans+=((n-__builtin_popcount(i))&1)?(Matrix_Tree()):(-Matrix_Tree());
ans=(ans+MOD)%MOD;
}
printf("%lld",ans);
return 0;
}

BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)的更多相关文章

  1. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  2. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  3. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

  4. BZOJ 4596: [Shoi2016]黑暗前的幻想乡

    Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...

  5. ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...

  6. bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】

    真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...

  7. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  8. 【BZOJ】4596: [Shoi2016]黑暗前的幻想乡

    [题意]给定n个点的无向完全图,有n-1个公司各自分管一部分路,要求所有公司都有修路的生成树数.n<=17. [算法]容斥原理+生成树计数(矩阵树定理) [题解]每个生成树方案是一个公司有无修路 ...

  9. 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理

    题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...

随机推荐

  1. Django之ModelForm操作

    一.ModelForm的使用 顾名思义,ModelForm就是将Model与Form进行绑定,Form有自动生成表单的作用,但是每一个forms字段需要自己手动填写,而Model就是数据库表包含了所有 ...

  2. nodejs 静态资源文件与登陆交互

    server2.js var express=require('express'); var expressStatic=require('express-static'); var server=e ...

  3. 我的浏览器标签同步方案:坚果云+Floccus

    前言 floccus github地址: https://github.com/marcelklehr/floccus Floccus插件是一款浏览器书签收藏同步插件,支持Chrome和Firefox ...

  4. 64. 输出字节流(FileOutputStream)

    IO分类:    按照数据流向分类:        输入流                输出流        按照处理的单位划分:        字节流:字节流读取的都是文件中的二进制数据,读取到的 ...

  5. PHP ftp_fget() 函数

    定义和用法 ftp_fget() 函数从 FTP 服务器上下载一个文件并保存到本地一个已经打开的文件中. 如果成功,该函数返回 TRUE.如果失败,则返回 FALSE. 语法 ftp_fget(ftp ...

  6. Shiro学习(11)缓存机制

    Shiro提供了类似于spring的Cache抽象,即Shiro本身不实现Cache,但是对Cache进行了又抽象,方便更换不同的底层Cache实现.对于Cache的一些概念可以参考我的<Spr ...

  7. bzoj1066题解

    [解题思路] 考虑拆点,把每根石柱拆成两个点,具体可以理解为石柱底部和石柱顶部,能爬到石柱顶部的蜥蜴只有有限只,而且蜥蜴只有爬到了石柱顶部才能跳到其他石柱的底部. 这样,考虑如下建图: 将每个有蜥蜴的 ...

  8. 管理员技术(七): Linux管理员 综合测试

    一.Linux管理员 综合测试 目标: 根据本文提供的练习步骤完成所有练习案例. 方案: 开始练习之前,先依次重置虚拟机环境. [root@room9pc13 ~]# rht-vmctl  reset ...

  9. nuxt 2.0采坑计之 (引入静态文件css)

    nuxt 2.0采坑计之静态文件css 外部引入css 全局引用方法为   (在nuxt.config.js配置中在   module.exports = {}  中添加) head: { meta: ...

  10. 关于RF做自动化大致流程的梳理

    RF只是一个框架,类似于单元测试框架,可以实现对用例的有效管理.结合其它第三方库,可以进行,接口,数据库,APP的自动化测试.结合JENKINS,还可以进行有效的持续集成. 本文不讲调用第三方库的哪些 ...