事实上,
\[e^{(e^t-1)x}=\sum_{k=0}^{\infty}\frac{B_k(x)}{k!}.\]
\[B_n(x)=x\sum_{k=1}^{n}\binom{n-1}{k-1}B_{k-1}(x),\]
其中$B_0(x)=1$.
%http://mathworld.wolfram.com/BellPolynomial.html

\[B_n=\sum_{k=0}^{n-1}\binom{n-1}{k}B_k
=\frac{1}{e}\sum_{k=0}^{\infty}\frac{k^n}{k!},\]

\[e^{e^x-1}=\sum_{n=0}^{\infty}\frac{B_n}{n!}x^n.\]

\[\frac{{\ln {B_n}}}{n} = \ln n - \ln \ln n - 1 + \frac{{\ln \ln n}}{{\ln n}} + \frac{1}{{\ln n}} + \frac{1}{2}{\left( {\frac{{\ln \ln n}}{{\ln n}}} \right)^2} + O\left( {\frac{{\ln \ln n}}{{{{\ln }^2}n}}} \right)\]
%de Bruijn, N. G. Asymptotic Methods in Analysis. New York: Dover, pp. 102-109, 1981.
\[{B_n} \sim \frac{1}{{\sqrt n }}{\left[ {\lambda \left( n \right)} \right]^{n + \frac{1}{2}}}{e^{\lambda \left( n \right) - n - 1}},\]
其中$\lambda \left( n \right) = \frac{n}{{W\left( n \right)}}$,其中$W(n)$为 the Lambert W-function.
%Lovász, L. Combinatorial Problems and Exercises, 2nd ed. Amsterdam, Netherlands: North-Holland, 1993.
Odlyzko (1995) gave
\[{B_n} \sim \frac{{n!}}{{\sqrt {2\pi {W^2}\left( n \right){e^{W\left( n \right)}}} }}\frac{{{e^{{e^{W\left( n \right)}} - 1}}}}{{{W^n}\left( n \right)}}.\]
%http://mathworld.wolfram.com/BellNumber.html

$$
a_n=e\frac{B_n}{n!}=\frac{1}{n!}\sum_{k=0}^{\infty}{\frac{k^n}{k!}}\ge e\left( \gamma \ln n \right) ^{-n}
$$

\item[B-3] 已知
\[E(x)=\sum_{n=0}^{\infty}\frac{x^n}{n!},\quad
T(x)=\frac{E(x)-E(-x)}{E(x)+E(-x)}.\]
\begin{enumerate}
\item 求证$T'(x)+T^2(x)=1$.
\item 求$T$的反函数.
\end{enumerate}

\item[B-4] 对任意自然数$m$, $f^{(m+1)}(x)$的级数展式中$x^m$项系数为$1$,求$f(x)$.
\end{enumerate}

Tangss同学面试问题:面试65人,有5个面试室,每个好像风格不太一样.我那个教室老师先问我学了些什么大学内容,然后问了一些相关方面的知识.最后考了点拓扑的东西(曲面的分类,欧拉示性数等)

Bell数的更多相关文章

  1. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  2. Stirling数,Bell数,Catalan数,Bernoulli数

    组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...

  3. Bell数和Stirling数

    前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...

  4. codeforces 569D D. Symmetric and Transitive(bell数+dp)

    题目链接: D. Symmetric and Transitive time limit per test 1.5 seconds memory limit per test 256 megabyte ...

  5. 恶补---bell数

    定义 bell数即一个集合划分的数目 示例 前几项的bell数列为 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 ,... 求值方法 1.bell ...

  6. Bell数入门

    贝尔数 贝尔数是以埃里克·坦普尔·贝尔命名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): $$B_0 = 1, B_1 = 1, B_2 = 2, B_3 = 5, B_4 = ...

  7. (转) [组合数学] 第一类,第二类Stirling数,Bell数

    一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...

  8. 关于Bell数的一道题目

      考虑 T3+1  {1,2,3,4} T3是3个元素的划分,如果在里面加入子集{4},   4被标成特殊元素,  就形成了T4一类的划分(里面的子集的并集是{1,2,3,4}) T2是2个元素的划 ...

  9. hdu4767 Bell——求第n项贝尔数

    题意 设第 $n$ 个Bell数为 $B_n$,求 $B_n \ mod  \ 95041567$.($1 \leq  n  \leq  2^{31}$) 分析 贝尔数的概念和性质,维基百科上有,这里 ...

随机推荐

  1. 一起了解 .Net Foundation 项目 No.2

    .Net 基金会中包含有很多优秀的项目,今天就和笔者一起了解一下其中的一些优秀作品吧. 中文介绍 中文介绍内容翻译自英文介绍,主要采用意译.如与原文存在出入,请以原文为准. ASP.NET MVC, ...

  2. 本地开发环境伪装成SSL连接的实现

    本地ssl开发测试实现1,在外网服务器上使用测试域名和t.test.cn,用let's encrypt申请 证书并正常运行2,修改本地服务器host文件,将t.kennylee.vip指向127.0. ...

  3. Enum, Generic and Templates

    文 Akisann@CNblogs / zhaihj@Github 本篇文章同时发布在Github上:https://zhaihj.github.io/enum-generic-and-templat ...

  4. apache工具

    组件 功能介绍HttpClient 提供HTTP客户端与服务器的各种通讯操作. 现在已改成HttpComponentsIO io工具的封装.Lang3 Java基本对象方法的工具类包 如:String ...

  5. 解决pycharm打开html页面一直刷新

    顺序——> File ——>Project:项目名——>project Structure 右侧的 + Add ContentRoot下面只保留本项目路径,其他全删了 方法2(推荐) ...

  6. generator 和 co模块

    // 类数组的生成器 // 类数组的生成器 function fns() { let obj = {0:1,1:2,2:3,length: 3}, [Symbol.iterator]: functio ...

  7. rhel6.5安装网络yum源过程

    **redhat的yum在线更新是收费的,如果没有注册的话不能使用,如果要使用,需将redhat的yum卸载后,重启安装其他yum源,再配置其他源.** 本文包括配置本地源及第三方源.第三方源包括:网 ...

  8. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  9. NodeJs-promise和async_await语法

    Callback hell回调地域 当我们以同步的方式编写耗时的代码,那么就会阻塞JS的单线程,造成CPU一直等待IO完成才去执行后面的代码. 而CPU的执行速度是远远大于硬盘IO速度的,这样等待只会 ...

  10. mysql必知必会--用通配符进行过滤

    LIKE 操作符 前面介绍的所有操作符都是针对已知值进行过滤的.不管是匹配一 个还是多个值,测试大于还是小于已知值,或者检查某个范围的值,共 同点是过滤中使用的值都是已知的.但是,这种过滤方法并不是任 ...