事实上,
\[e^{(e^t-1)x}=\sum_{k=0}^{\infty}\frac{B_k(x)}{k!}.\]
\[B_n(x)=x\sum_{k=1}^{n}\binom{n-1}{k-1}B_{k-1}(x),\]
其中$B_0(x)=1$.
%http://mathworld.wolfram.com/BellPolynomial.html

\[B_n=\sum_{k=0}^{n-1}\binom{n-1}{k}B_k
=\frac{1}{e}\sum_{k=0}^{\infty}\frac{k^n}{k!},\]

\[e^{e^x-1}=\sum_{n=0}^{\infty}\frac{B_n}{n!}x^n.\]

\[\frac{{\ln {B_n}}}{n} = \ln n - \ln \ln n - 1 + \frac{{\ln \ln n}}{{\ln n}} + \frac{1}{{\ln n}} + \frac{1}{2}{\left( {\frac{{\ln \ln n}}{{\ln n}}} \right)^2} + O\left( {\frac{{\ln \ln n}}{{{{\ln }^2}n}}} \right)\]
%de Bruijn, N. G. Asymptotic Methods in Analysis. New York: Dover, pp. 102-109, 1981.
\[{B_n} \sim \frac{1}{{\sqrt n }}{\left[ {\lambda \left( n \right)} \right]^{n + \frac{1}{2}}}{e^{\lambda \left( n \right) - n - 1}},\]
其中$\lambda \left( n \right) = \frac{n}{{W\left( n \right)}}$,其中$W(n)$为 the Lambert W-function.
%Lovász, L. Combinatorial Problems and Exercises, 2nd ed. Amsterdam, Netherlands: North-Holland, 1993.
Odlyzko (1995) gave
\[{B_n} \sim \frac{{n!}}{{\sqrt {2\pi {W^2}\left( n \right){e^{W\left( n \right)}}} }}\frac{{{e^{{e^{W\left( n \right)}} - 1}}}}{{{W^n}\left( n \right)}}.\]
%http://mathworld.wolfram.com/BellNumber.html

$$
a_n=e\frac{B_n}{n!}=\frac{1}{n!}\sum_{k=0}^{\infty}{\frac{k^n}{k!}}\ge e\left( \gamma \ln n \right) ^{-n}
$$

\item[B-3] 已知
\[E(x)=\sum_{n=0}^{\infty}\frac{x^n}{n!},\quad
T(x)=\frac{E(x)-E(-x)}{E(x)+E(-x)}.\]
\begin{enumerate}
\item 求证$T'(x)+T^2(x)=1$.
\item 求$T$的反函数.
\end{enumerate}

\item[B-4] 对任意自然数$m$, $f^{(m+1)}(x)$的级数展式中$x^m$项系数为$1$,求$f(x)$.
\end{enumerate}

Tangss同学面试问题:面试65人,有5个面试室,每个好像风格不太一样.我那个教室老师先问我学了些什么大学内容,然后问了一些相关方面的知识.最后考了点拓扑的东西(曲面的分类,欧拉示性数等)

Bell数的更多相关文章

  1. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  2. Stirling数,Bell数,Catalan数,Bernoulli数

    组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...

  3. Bell数和Stirling数

    前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...

  4. codeforces 569D D. Symmetric and Transitive(bell数+dp)

    题目链接: D. Symmetric and Transitive time limit per test 1.5 seconds memory limit per test 256 megabyte ...

  5. 恶补---bell数

    定义 bell数即一个集合划分的数目 示例 前几项的bell数列为 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 ,... 求值方法 1.bell ...

  6. Bell数入门

    贝尔数 贝尔数是以埃里克·坦普尔·贝尔命名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): $$B_0 = 1, B_1 = 1, B_2 = 2, B_3 = 5, B_4 = ...

  7. (转) [组合数学] 第一类,第二类Stirling数,Bell数

    一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...

  8. 关于Bell数的一道题目

      考虑 T3+1  {1,2,3,4} T3是3个元素的划分,如果在里面加入子集{4},   4被标成特殊元素,  就形成了T4一类的划分(里面的子集的并集是{1,2,3,4}) T2是2个元素的划 ...

  9. hdu4767 Bell——求第n项贝尔数

    题意 设第 $n$ 个Bell数为 $B_n$,求 $B_n \ mod  \ 95041567$.($1 \leq  n  \leq  2^{31}$) 分析 贝尔数的概念和性质,维基百科上有,这里 ...

随机推荐

  1. logstash 安装 配置

    1.Logstash 安装:在产生日志的服务器上安装 Logstash1.安装java环境 # yum install java-1.8.0-openjdk.x86_642.安装logstash(使用 ...

  2. H5浏览器强制手机横屏

    H5强制手机横屏 1. 通过screen.orientation可以定义手机屏幕的方向,但是lock()方法仅在浏览器已经通过requestFullscreen()切换到全屏模式时起作用,例:强制手机 ...

  3. PWA(Progressive web apps),渐进式 Web 应用

    学习博客:https://www.jianshu.com/p/098af61bbe04 学习博客:https://www.zhihu.com/question/59108831 官方文档:https: ...

  4. centos7安装node.js

    安装版本:node-v10.15.3 一.安装必要的编译软件包 # yum install gcc gcc-c++ -y 二.从源码下载Nodejs 进入官网选择自己需要的版本 https://nod ...

  5. tensorflow开发环境版本组合

    记录下各模块的版本 tensorflow 1.15.0       print tf.__version__ cuda 10.0.130            nvcc -v cudnn 7.6.4  ...

  6. 这个 Python 代码自动补全神器搞得我卧槽卧槽的

    是时候跟你说说这个能让你撸代码撸得舒服得不要不要的神器了——kite. ​!   ​ 简单来说,它是一款 IDE 的插件,能做到代码自动补全,可能你会说了,这有什么牛逼的?一般的编辑器不都有这个功能么 ...

  7. linux下安装lxml包

    爬虫项目需要用到lxml包,解析html文件,但是linux服务器没有lxml包, 服务器中python版本是3.8. 直接使用命令安装: pip install lxml 中途会报错,错误提示我没有 ...

  8. API网关服务:Spring Cloud Zuul

    最近在学习Spring Cloud的知识,现将API网关服务:Spring Cloud Zuul 的相关知识笔记整理如下.[采用 oneNote格式排版]

  9. vs2015 编译boost库

    1.下载boost官网安装包. https://dl.bintray.com/boostorg/release/1.66.0/binaries/ 注意:这里一定要选择好boost版本 如:  boos ...

  10. Android_向用户发送短信

    一段代码,用的时候copy就行 记得在manifest里声明send-sms和read-sms权限 public class SendMsgActivity extends AppCompatActi ...