[CTSC2008]网络管理 [树剖+整体二分]
这题的复杂度可以到达惊人的\(\log^4\)据说还能跑过去(差点没吓死我
直接二分+树剖树套树(\(n \log^4 n\))
一个\(\log\)也不少的4\(\log\)
但是我有个\(\log^3\)的树剖上面整体二分+线段树的做法
不过据说有个\(\log\)做法,我不会,反正我菜就是了
然后的话 就直接考虑个消除贡献…然而并不需要排序
权值线段树 就可以了
每次添加修改就
if(! op) {
int y = read() , z = read() ;
Q[++ tot] = { 0 , -1 , val[y] , y , 1 } ; val[y] = z ;
Q[++ tot] = { 0 , 1 , val[y] , y , 1 } ; b[++ len] = z ;
} else {
int y = read() , z = read() ; Q[++ tot] = { y , z , op , ++ pos , 2} ;
}
然后就成功完成了打消贡献以及添加贡献
然后整体二分板子即可
#include <bits/stdc++.h>
#define int long long
#define rep(a , b , c) for(int a = b ; a <= c ; ++ a)
#define Rep(a , b , c) for(int a = b ; a >= c ; -- a)
#define go(u) for(int i = G.head[u] , v = G.to[i] , w = G.dis[i] ; i ; v = G.to[i = G.nxt[i]] , w = G.dis[i])
using namespace std ;
using ll = long long ;
using pii = pair < int , int > ;
using vi = vector < int > ;
int read() {
int x = 0 ; bool f = 1 ; char c = getchar() ;
while(c < 48 || c > 57) {
if(c == '-') f = 0 ;
c = getchar() ;
}
while(c > 47 && c < 58) {
x = (x << 1) + (x << 3) + (c & 15) ;
c = getchar() ;
}
return f ? x : -x ;
}
template <class T> void print(T x , char c = '\n') {
static char st[100] ; int stp = 0 ;
if(! x) putchar('0') ; if(x < 0) x = -x , putchar('-') ;
while(x) st[++ stp] = x % 10 ^ 48 , x /= 10 ;
while(stp) putchar(st[stp --]) ; putchar(c) ;
}
template <class T> void cmax(T & x , T y) { x < y ? x = y : 0 ; }
template <class T> void cmin(T & x , T y) { x > y ? x = y : 0 ; }
const int _N = 1e6 + 10 ;
struct Group {
int head[_N] , nxt[_N << 1] , to[_N] , dis[_N] , cnt = 1 ;
Group () { memset(head , 0 , sizeof(head)) ; }
void add(int u , int v , int w = 1) { nxt[++ cnt] = head[u] ; to[cnt] = v ; dis[cnt] = w ; head[u] = cnt ; }
} ;
const int N = 5e5 + 10 ;
typedef int arr[N] ;
Group G ;
int n , q , len = 0 , val[N] , b[N << 1] ;
arr fa , d , son , sz ;
void dfs(int u) {
sz[u] = 1 ; go(u) if(v ^ fa[u]) {
fa[v] = u , d[v] = d[u] + 1 , dfs(v) , sz[u] += sz[v] ;
if(sz[v] > sz[son[u]]) son[u] = v ;
}
}
arr top , id ;
int idx = 0 ;
void dfs(int u , int t) {
top[u] = t ;
id[u] = ++ idx ;
if(son[u]) dfs(son[u] , t) ;
go(u) if(v ^ fa[u] && v ^ son[u]) dfs(v , v) ;
}
struct Seg {
int sum[N << 2] ;
void change(int l , int r , int rt , int pos , int val) {
if(l == r) { sum[rt] += val ; return ; }
int mid = l + r >> 1 ;
if(pos <= mid) change(l , mid , rt << 1 , pos , val) ;
else change(mid + 1 , r , rt << 1 | 1 , pos , val) ;
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1] ;
}
int query(int a , int b , int l , int r , int rt) {
if(a <= l && r <= b) return sum[rt] ;
int mid = l + r >> 1 , ans = 0 ;
if(a <= mid) ans += query(a , b , l , mid , rt << 1) ;
if(b > mid) ans += query(a , b , mid + 1 , r , rt << 1 | 1) ;
return ans ;
}
} t ;
int query_range(int x , int y) {
int ans = 0 ;
while(top[x] != top[y]) { if(d[top[x]] < d[top[y]]) swap(x , y) ; ans += t.query(id[top[x]] , id[x] , 1 , n , 1) ; x = fa[top[x]] ; }
if(d[x] > d[y]) swap(x , y) ; ans += t.query(id[x] , id[y] , 1 , n , 1) ;
return ans ;
}
struct Query {
int x , y , k , id , type ;
} Q[N] , q1[N] , q2[N] ;
int tot = 0 , num = 0 , pos = 0 ;
arr ans ;
void solve(int L , int R , int l , int r) {
if(L > R) return ;
if(l == r) {
rep(i , L , R) if(Q[i].type == 2) ans[Q[i].id] = l ; return ;
}
int mid = l + r >> 1 , cnt1 = 0 , cnt2 = 0 ;
rep(i , L , R) {
if(Q[i].type == 1) {
if(Q[i].k > mid) {
t.change(1 , n , 1 , id[Q[i].id] , Q[i].y) ; q2[++ cnt2] = Q[i] ;
} else q1[++ cnt1] = Q[i] ;
} else {
int res = query_range(Q[i].x , Q[i].y) ;
if(res >= Q[i].k) q2[++ cnt2] = Q[i] ;
else { Q[i].k -= res ; q1[++ cnt1] = Q[i] ; }
}
}
rep(i , 1 , cnt2) if(q2[i].type == 1) t.change(1 , n , 1 , id[q2[i].id] , -q2[i].y) ;
rep(i , 1 , cnt1) Q[L + i - 1] = q1[i] ; rep(i , 1 , cnt2) Q[L + cnt1 + i - 1] = q2[i] ;
solve(L , L + cnt1 - 1 , l , mid) ; solve(L + cnt1 , R , mid + 1 , r) ;
}
signed main() {
n = read() ; q = read() ;
rep(i , 1 , n) { val[i] = read() ; Q[++ tot] = { 0 , 1 , val[i] , i , 1 } ; b[++ len] = val[i] ; }
rep(i , 2 , n) { int x = read() , y = read() ; G.add(x , y) ; G.add(y , x) ; }
dfs(1) ; dfs(1 , 1) ;
rep(i , 1 , q) {
int op = read() ;
if(! op) {
int y = read() , z = read() ;
Q[++ tot] = { 0 , -1 , val[y] , y , 1 } ; val[y] = z ;
Q[++ tot] = { 0 , 1 , val[y] , y , 1 } ; b[++ len] = z ;
} else {
int y = read() , z = read() ; Q[++ tot] = { y , z , op , ++ pos , 2} ;
}
}
sort(b + 1 , b + len + 1) , len = unique(b + 1 , b + len + 1) - b - 1 ;
rep(i , 1 , tot) if(Q[i].type != 2) Q[i].k = lower_bound(b + 1 , b + len + 1 , Q[i].k) - b ;
solve(1 , tot , 0 , len + 1) ;
rep(i , 1 , pos) {
if(! ans[i]) puts("invalid request!") ;
else print(b[ans[i]]) ;
}
return 0 ;
}
[CTSC2008]网络管理 [树剖+整体二分]的更多相关文章
- 2019.01.13 bzoj1146: [CTSC2008]网络管理Network(整体二分+树剖)
传送门 题意简述:给一棵树,支持单点修改,询问路径上两点间第kkk大值. 思路: 读懂题之后立马可以想到序列上带修区间kkk大数的整体二分做法,就是用一个bitbitbit来支持查值. 那么这个题把树 ...
- P4175 [CTSC2008]网络管理 树剖+树套树
$ \color{#0066ff}{ 题目描述 }$ M公司是一个非常庞大的跨国公司,在许多国家都设有它的下属分支机构或部门.为了让分布在世界各地的N个部门之间协同工作,公司搭建了一个连接整个公司的通 ...
- bzoj 1146 网络管理Network (CDQ 整体二分 + 树刨)
题目传送门 题意:求树上路径可修改的第k大值是多少. 题解:CDQ整体二分+树刨. 每一个位置上的数都会有一段持续区间 根据CDQ拆的思维,可以将这个数拆成出现的时间点和消失的时间点. 然后通过整体二 ...
- BZOJ4538 HNOI2016网络(树链剖分+线段树+堆/整体二分+树上差分)
某两个点间的请求只对不在这条路径上的询问有影响.那么容易想到每次修改除该路径上的所有点的答案.对每个点建个两个堆,其中一个用来删除,线段树维护即可.由于一条路径在树剖后的dfs序中是log个区间,所以 ...
- 洛谷P4332 [SHOI2014]三叉神经树(LCT,树剖,二分查找,拓扑排序)
洛谷题目传送门 你谷无题解于是来补一发 随便百度题解,发现了不少诸如树剖\(log^3\)LCT\(log^2\)的可怕描述...... 于是来想想怎么利用题目的性质,把复杂度降下来. 首先,每个点的 ...
- 【bzoj2738】矩阵乘法 整体二分+二维树状数组
题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入 第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵:再接下来Q行每行5个数 ...
- 整体二分--BZOJ1901: Zju2112 Dynamic Rankings
n<=10000个数有m<=10000个操作,1.询问一个区间的第k小的数:2.单点修改. 带修主席树. 整体二分. 整体二分的必要条件: #include<string.h> ...
- [CTSC2008]网络管理(整体二分+树剖+树状数组)
一道经典的带修改树链第 \(k\) 大的问题. 我只想出三个 \(\log\) 的解法... 整体二分+树剖+树状数组. 那不是暴力随便踩的吗??? 不过跑得挺快的. \(Code\ Below:\) ...
- 【BZOJ1146】【CTSC2008】网络管理 [整体二分]
网络管理 Time Limit: 50 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Description M公司是一个非常庞大的跨国公司,在 ...
随机推荐
- 题解【[HNOI2010]弹飞绵羊】
\[ \texttt{Description} \] 有 \(n\) 个弹力装置排成一排,第 \(i\) 个弹力装置的弹力系数是 \(k_i\) ,绵羊到第 \(i\) 个装置时,会被弹到第 \(i+ ...
- Windows搭建IIS服务器使用NATAPP实现内网穿透
目的:外网可以访问本地网页. 步骤: 一.实现内网访问 1.Win+Q搜索[控制面板],选择[程序],点击[启用或关闭Windows功能], 2.勾选[Internet Information Ser ...
- python学习(10)字典学习,写一个三级菜单程序
学习了字典的应用.按老师的要求写一个三级菜单程序. 三级菜单程序需求如下: 1.深圳市的区--街道--社区---小区4级 2.建立一个字典,把各级区域都装进字典里 3.用户可以从1级进入2级再进入3级 ...
- python3 jenkins api操作
一.安装依赖包 pip install python-jenkins 二.常用操作 0.调用jenkins(以下用的server都是这里的环境) import jenkins server = jen ...
- 线段树学习----C语言
/* 线段树学习:如果一个节点为i,那么他的左孩子为2I+1,右孩子为2i+2: */ #include<stdio.h> #define min(a,b) a<b?a:b; ]; ...
- 目标检测:yolo-v3与faster-rcnn
一. 算法背景 1. 机器视觉实际应用往往涉及包含多个物体的复杂场景,基于深度卷积神经网络的特征提取器,需要结合其他算法来准确定位多个目标,并进行识别. 2. 工业领域,目标检测算法在安防和质检系统都 ...
- clr via c# clr寄宿和AppDomain (一)
1 clr寄宿-----.net framework在windows平台的顶部允许.者意味着.net framework必须用windows能理解的技术来构建.所有托管模块和程序集文件必须使用wind ...
- 静态随机存储器SRAM存储数据原理
RAM主要的作用就是存储代码和数据供中央处理器在需要的时候进行调用.对于RAM等存储器来说仍是一样的,虽然存储的都是代表0和1的代码,但是不同的组合就是不同的数据.对于RAM存储器而言数据总线是用来传 ...
- Centos7之firewall配置命令
firewalld的基本使用 查看状态:systemctl status firewalld 启动:systemctl start firewalld 停止:systemctl stop firewa ...
- ELK学习004:Elasticsearch常规操作
CRUD 在我们的项目中有日志是一个必不可少的东西,但是日志的检索是一个很麻烦的事情,如每天一个日志,要找到问题就得一个一个找,并不能做到检索功能,这还算好的,如果是分布式的,每个机器都得找一遍,这种 ...