8.10-DayT3游走(wander)
题目大意
lue..
题解
先跑一遍tarjan缩点,在新图中加入两个强连通分量之间的边,则此图为一个有向无环图(DAG)。则最终答案为1点所在的强连通分量或包括1点的几个强连通分量的点数之和。
如果为几个强连通分量则由于该图为DAG而题中要求为从1点出发又回到1点,
故路径中一定包含一条反向边。又由于强连同分量中的点彼此强连同,故该反向边一定为两个强连同分量之间的边。
故路径为一条边+一条经过一点所在强连通分量的路径。
图中每个点代表一个强连通分量。其中1为包含1点的强通分量。
其中路径为k-->........3-->1-->2-->4-->......-->n,而反向边为边k-->n
因此,最终答案即为求如上一条包含点最多的路径。
考虑边k-->n,边k-->n一定为缩点后强连通分量之间的边。如果首先求出路径长度则枚举边k-->n即可。而路径长度一定为k-->1的包含点最多的路径长度与1-->n的包含点最多的路径的点的个数之和减1点所在的强连通分量包含的点的个数。
故可以预处理出1点所在的强连通分量到其他强连通分量的路径中最多包含点的个数,再将所有强连通分量间的边反向,求1点所在的强连通分量到其他强连通分量的路径中最多包含点的个数,既求其他强连通分量到1点所在的强连通分量的路径中最多包含点的个数。
最后枚举所有强连通分量之间的边k-->n,答案为 max(f1[n]+f2[k]-size[bel[1]])
注意:当f1或f2为0时不更新答案因为如果为0则代表1点所在的强连通分量
无法到达n点或k点。
Tarjan时间复杂度为O(n+m),两次DAG上求最长路的时间复杂度为O(m)
总体时间复杂度O(n+m)。
(hhh一看就不是我自己写的题解...改不动了hhh)
#include<stack>
#include<queue>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 110000
int n,m,ans;
int t1,t2,tot,scc,cnt;
int head[N],to[*N],nex[*N];
int deep[N],low[N],bel[N],vis[N];
int ins[N],inq[N],size[N];
int f1[N],f2[N];
stack<int>s;
queue<int>que;
void add(int x,int y)
{
tot++;
nex[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
int tot1;
int head1[N],to1[*N],nex1[*N],from1[*N];
void add1(int x,int y)
{
tot1++;
nex1[tot1]=head1[x];
head1[x]=tot1;
to1[tot1]=y;
from1[tot1]=x;
}
int tot2;
int head2[N],to2[*N],nex2[*N],from2[*N];
void add2(int x,int y)
{
tot2++;
nex2[tot2]=head2[x];
head2[x]=tot2;
to2[tot2]=y;
from2[tot2]=x;
}
void tarjan(int x)
{
deep[x]=low[x]=++cnt;
ins[x]=;
vis[x]=;
s.push(x);
for(int i=head[x];i;i=nex[i])
{
if(ins[to[i]])
low[x]=min(low[x],deep[to[i]]);
else if(!vis[to[i]])
{
tarjan(to[i]);
low[x]=min(low[x],low[to[i]]);
}
}
if(deep[x]==low[x])
{
scc++;
int tmp=s.top();
s.pop();
size[scc]++;
bel[tmp]=scc;
ins[tmp]=;
while(tmp!=x)
{
tmp=s.top();
s.pop();
size[scc]++;
ins[tmp]=;
bel[tmp]=scc;
}
}
}
int main()
{
freopen("wander.in","r",stdin);
freopen("wander.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&t1,&t2);
add(t1,t2);
}
for(int i=;i<=n;i++)
{
if(!vis[i])
{
cnt=;
tarjan(i);
}
}
for(int i=;i<=n;i++)
{
for(int j=head[i];j;j=nex[j])
if(bel[i]!=bel[to[j]])
{
add1(bel[i],bel[to[j]]);
add2(bel[to[j]],bel[i]);
}
}
que.push(bel[]);
f1[bel[]]=size[bel[]];
inq[bel[]]=;
while(!que.empty())
{
int tmp=que.front();
que.pop();
inq[tmp]=;
for(int i=head1[tmp];i;i=nex1[i])
if(f1[to1[i]]<f1[tmp]+size[to1[i]])
{
f1[to1[i]]=f1[tmp]+size[to1[i]];
if(!inq[to1[i]])
{
inq[to1[i]]=;
que.push(to1[i]);
}
}
}
memset(inq,,sizeof(inq));
que.push(bel[]);
inq[bel[]]=;
f2[bel[]]=size[bel[]];
while(!que.empty())
{
int tmp=que.front();
que.pop();
inq[tmp]=;
for(int i=head2[tmp];i;i=nex2[i])
if(f2[to2[i]]<f2[tmp]+size[to2[i]])
{
f2[to2[i]]=f2[tmp]+size[to2[i]];
if(!inq[to2[i]])
{
inq[to2[i]]=;
que.push(to2[i]);
}
}
}
ans=max(ans,size[bel[]]);
for(int i=;i<=tot2;i++)
if(f2[to2[i]]&&f1[from2[i]])
{
if(f2[to2[i]]+f1[from2[i]]-size[bel[]]>ans)
ans=f2[to2[i]]+f1[from2[i]]-size[bel[]];
}
printf("%d",ans);
return ;
}
std太强了
8.10-DayT3游走(wander)的更多相关文章
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- 3143: [Hnoi2013]游走 - BZOJ
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- 数学(概率):HNOI2013 游走
[题目描述] 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这 ...
- 介绍一个全局最优化的方法:随机游走算法(Random Walk)
1. 关于全局最优化求解 全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值.上一篇文章讲解了一个求解局部极小值的方法--梯度下降法.这种方法对于求解精度不高 ...
- [补档][Hnoi2013]游走
[Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...
- 游走[HNOI2013]
[题目描述] 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这 ...
- bzoj 3143: [Hnoi2013]游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
随机推荐
- 在MATLAB R2018b中配置VLFeat
在MATLAB R2018b中配置VLFeat 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ VLFeat官网:http://www.vlfeat.o ...
- The sklearn preprocessing
Recently, I was writing module of feature engineering, i found two excellently packages -- tsfresh a ...
- python 方法和函数
代码 def func(): pass class Foo(object): def func(self): pass # 执行方式一 # obj = Foo() # obj.func() # 方法 ...
- asp.net web core 开发问题汇总(1)
1 ASP.NET Core 设置默认静态起始页 转载地址:ASP.NET Core 设置默认起始页(如default.html) 注:1 默认情况下ASP.NET Core应用程序时不支持静态 ...
- JavaDay3(上)
Java learning_Day3(上) 本人学习视频用的是马士兵的,也在这里献上 <链接:https://pan.baidu.com/s/1qKNGJNh0GgvlJnitTJGqgA> ...
- 将本地文件git到远程github仓库
使用git管理项目是开发人员必备的技能,下面就介绍如何使用git将本地文件管理并且同步到github上面. 小白可以参考 创建SSH-key并且在github中添加认证 在本地用户的.ssh文件下面生 ...
- navicat连接mysql8.0+版本报错2059
ERROR 2059 : Authentication plugin 'caching_sha2_password' cannot be loaded 问题: 连接Docker启动的mysql出现:E ...
- django css文件导入,模板继承
今天写了一下模板继承 刚开始感觉还行,也挺简单的 当只有html的时候还是能继承到的,代码如下.首先在父html文件里加入 {% block content %} {% block extracss ...
- Web安全测试学习笔记 - 文件包含
基础知识 文件包含指的是一个文件动态引用另一个文件,这是一种非常灵活的动态调用方式.有点类似Java引用jar包,但区别在于jar包引用后一般是固定不变的(一般不能动态改变所引用的jar包名称),而文 ...
- Jupyter Notebook快捷键总结
1. Jupyter Notebook有两种mode Enter:进入edit模式 Esc:进入command模式 2. Command命令快捷键: A:在上方增加一个cell B:在下方增加一个ce ...