洛谷P3834【模板】可持久化线段树 1(主席树)
题目背景
这是个非常经典的主席树入门题——静态区间第K小
数据已经过加强,请使用主席树。同时请注意常数优化
题目描述
如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值。
输入输出格式
输入格式:
第一行包含两个正整数N、M,分别表示序列的长度和查询的个数。
第二行包含N个正整数,表示这个序列各项的数字。
接下来M行每行包含三个整数\(l, r, k\) , 表示查询区间\([l, r]\)内的第k小值。
输出格式:
输出包含k行,每行1个正整数,依次表示每一次查询的结果
输入输出样例
输入样例#1:
5 5
25957 6405 15770 26287 26465
2 2 1
3 4 1
4 5 1
1 2 2
4 4 1
输出样例#1:
6405
15770
26287
25957
26287
说明
数据范围:
对于20%的数据满足:\(1 \leq N, M \leq 10\)
对于50%的数据满足:\(1 \leq N, M \leq 10^3\)
对于80%的数据满足:\(1 \leq N, M \leq 10^5\)
对于100%的数据满足:\(1 \leq N, M \leq 2\cdot 10^5\)
对于数列中的所有数\(a_i\) ,均满足\(-{10}^9 \leq a_i \leq {10}^9\)
样例数据说明:
N=5,数列长度为5,数列从第一项开始依次为\([25957, 6405, 15770, 26287, 26465 ]\)
第一次查询为\([2, 2]\)区间内的第一小值,即为6405
第二次查询为\([3, 4]\)区间内的第一小值,即为15770
第三次查询为\([4, 5]\) 区间内的第一小值,即为26287
第四次查询为\([1, 2]\)区间内的第二小值,即为25957
第五次查询为\([4, 4]\) 区间内的第一小值,即为26287
题解
可持久化线段树模板题。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
inline int max(int a, int b){return a > b ? a : b;}
inline int min(int a, int b){return a < b ? a : b;}
inline void swap(int &x, int &y){int tmp = x;x = y;y = tmp;}
inline void read(int &x)
{
x = 0;char ch = getchar(), c = ch;
while(ch < '0' || ch > '9') c = ch, ch = getchar();
while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
if(c == '-') x = -x;
}
const int INF = 0x3f3f3f3f;
const int MAXN = 200000 + 10;
struct Node
{
int ls, rs, size;
void clear(){ls = rs = size = 0;}
}node[MAXN * 40];
int n, m, stack[MAXN], top, tot, num[MAXN], cnt, fa[MAXN], pos[MAXN];
int newnode(){if(top) return stack[top --];return ++ tot;}
void delnode(int x){stack[++ top] = x;node[x].clear();}
struct Tmp{int rank,num;}tmp[MAXN];
bool cmp(Tmp a, Tmp b){return a.num < b.num;}
inline void pushup(int x){node[x].size = node[node[x].ls].size + node[node[x].rs].size;}
void build(int &o, int l = 1, int r = cnt)
{
if(!o) o = newnode();
if(l == r) return;
int mid = (l + r) >> 1;
build(node[o].ls, l, mid);
build(node[o].rs, mid + 1, r);
}
void insert(int &o, int oo, int p, int l = 1, int r = cnt)
{
if(!o) o = newnode();
node[o].size = node[oo].size + 1;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) insert(node[o].ls, node[oo].ls, p, l, mid), node[o].rs = node[oo].rs;
else insert(node[o].rs, node[oo].rs, p, mid + 1, r), node[o].ls = node[oo].ls;
}
//l-1->o,r->oo, 第k小
int ask(int o, int oo, int k, int l = 1, int r = cnt)
{
if(l == r) return l;
int mid = (l + r) >> 1, a = node[node[oo].ls].size - node[node[o].ls].size;
if(a >= k) return ask(node[o].ls, node[oo].ls, k, l, mid);
else return ask(node[o].rs, node[oo].rs, k - a, mid + 1, r);
}
int main()
{
read(n), read(m);
for(int i = 1;i <= n;++ i) read(tmp[i].num), tmp[i].rank = i;
std::sort(tmp + 1, tmp + 1 + n, cmp);
tmp[0].num = -INF;
for(int i = 1;i <= n;++ i)
{
if(tmp[i].num > tmp[i - 1].num) ++ cnt, pos[cnt] = tmp[i].num;
num[tmp[i].rank] = cnt;
}
build(fa[0]);
for(int i = 1;i <= n;++ i) insert(fa[i], fa[i - 1], num[i]);
for(int i = 1;i <= m;++ i)
{
int l, r, k;read(l), read(r), read(k);
printf("%d\n", pos[ask(fa[l - 1], fa[r], k)]);
}
return 0;
}
洛谷P3834【模板】可持久化线段树 1(主席树)的更多相关文章
- 洛谷P3834 [模板]可持久化线段树1(主席树) [主席树]
题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定 ...
- 【洛谷 P3834】 可持久化线段树1(主席树)
题目链接 主席树=可持久化权值线段树. 如果你不会可持久化线段树,请右转 如果你不会权值线段树,请自行脑补,就是线段树维护值域里有多少个数出现. 可持久化线段树是支持查询历史版本的. 我们对每个数都进 ...
- 洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)
题目链接 //离散化后范围1~cnt不要错 #include<cstdio> #include<cctype> #include<algorithm> //#def ...
- 洛谷.3835.[模板]可持久化平衡树(fhq treap)
题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...
- 洛谷P4559 [JSOI2018]列队 【70分二分 + 主席树】
题目链接 洛谷P4559 题解 只会做\(70\)分的\(O(nlog^2n)\) 如果本来就在区间内的人是不用动的,区间右边的人往区间最右的那些空位跑,区间左边的人往区间最左的那些空位跑 找到这些空 ...
- ☆ [洛谷P2633] Count on a tree 「树上主席树」
题目类型:主席树+\(LCA\) 传送门:>Here< 题意:给出一棵树.每个节点有点权.问某一条路径上排名第\(K\)小的点权是多少 解题思路 类似区间第\(K\)小,但放在了树上. 考 ...
- 【洛谷 P2633】 Count on a tree(主席树,树上差分)
题目链接 思维难度0 实现难度7 建出主席树后用两点的状态减去lca和lca父亲的状态,然后在新树上跑第\(k\)小 #include <cstdio> #include <cstr ...
- 洛谷$P$2468 粟粟的书架 $[SDOI2010]$ 主席树
正解:主席树 解题报告: 传送门! 题目大意是说,给定一个矩形,然后每次会给一个,这个大矩形中的一个小矩形,询问从小矩形中最少选多少个数字能满足它们之和大于等于给定数字$x$ 看起来很神的样子,完全不 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- P3919 【模板】可持久化数组 -初步探究主席树
本篇blog主要是给自己(大家)看的. 感谢longlongzhu123奆佬(此人初二LCT)的指点,使本蒟蒻可以快速开始主席树入门. what is 主席树? $ $主席树这个名字只不 ...
随机推荐
- NX二次开发-UFUN修剪体UF_MODL_trim_body
1 NX11+VS2013 2 3 4 #include <uf.h> 5 #include <uf_modl.h> 6 7 8 UF_initialize(); 9 10 / ...
- 秦曾昌人工智能课程---5、KNN和朴素贝叶斯
秦曾昌人工智能课程---5.KNN和朴素贝叶斯 一.总结 一句话总结: 拟合和概率:构建机器学习模型,一般有拟合和概率两种方式 轻学无用:一定要保证学有所用,要深入学习,比如之前做的安卓,一定要学通, ...
- 数学相关比较 牛顿迭代法求开方 很多个n的平方分之一
牛顿迭代法求开方 牛顿迭代法 作用: 求f(x) = 0 的解 方法:假设任意一点 x0, 求切线与x轴交点坐标x1, 再求切线与x轴交点坐标x2,一直重复,直到f(xn) 与0的差距在一个极小的范围 ...
- Caused by: java.sql.SQLSyntaxErrorException: ORA-00932: 数据类型不一致: 应为 NUMBER, 但却获得 BINARY
at org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint(ReflectiveMethodInvo ...
- jsp-提交表单乱码解决
jsp提交表单有两种方式,一种是get,一种是post,对于两种方式都可能出现乱码,以下给出两种乱码方式的解决方案. 1.post提交解决乱码 //设置解码方式,post提交解决乱码 比较简单 req ...
- c++实现写一个函数,求2个整数的和,要求在函数体内不得使用+,-* /
#include <iostream> using namespace std; int add(int x, int y) { return x+y; } int addmove(int ...
- Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...
- 服务启动脚本start_boot.sh
vim start_boot.sh #!/bin/bash usage(){ echo "$0 [start|stop|usage]" } status_springboot(){ ...
- 【JZOJ3422】水叮当的舞步
description 水叮当得到了一块五颜六色的格子形地毯作为生日礼物,更加特别的是,地毯上格子的颜色还能随着踩踏而改变. 为了讨好她的偶像虹猫,水叮当决定在地毯上跳一支轻盈的舞来卖萌~~~ 地毯上 ...
- js对象 事件
对象 创建 var myObject = {};/* 声明对象字面变量*/ 添加值myObject.name="Jener";myObject.age=25; 代码格式 ...