题目大意:

给定一个n个点m条边的无向图

求从点1去点n再从点n回点1的不重叠(同一条边不能走两次)的最短路

挑战P239

求去和回的两条最短路很难保证不重叠

直接当做是由1去n的两条不重叠的最短路

这样就变成了由1去n流量为2的最小费用流

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int N=;
int n,m;
struct EDGE { int v,w,c,r; };
vector <EDGE> E[N];
void addE(int u,int v,int w,int c) {
E[u].push_back((EDGE){v,w,c,E[v].size()});
E[v].push_back((EDGE){u,,-c,E[u].size()-});
}
int dis[N], pv[N] ,pe[N];
int minCFlow(int s,int t,int f) {
int res=;
while(f>) {
/// Bellman-Ford求s到t最短路
memset(dis,INF,sizeof(dis));
memset(pv,,sizeof(pv));
dis[s]=;
bool upD=;
while(upD) {
upD=;
for(int i=;i<=n;i++) { // 通过i点
if(dis[i]==INF) continue;
for(int j=;j<E[i].size();j++) { // 更新E[i][j]点的最短路
EDGE& e=E[i][j];
if(e.w> && dis[e.v]>dis[i]+e.c) { // 边容量>0才能走
dis[e.v]=dis[i]+e.c; // 找到更短的路 更新
pv[e.v]=i, pe[e.v]=j; // 记录前驱点及边 便于通过e.v找到i点
upD=;
}
}
}
}
if(dis[t]==INF) return -; // s不能到t 不能增广 int d=f; // 找到本轮实际能够流出的流量(即实际用掉的容量)
for(int i=t;pv[i];i=pv[i])
d=min(d,E[pv[i]][pe[i]].w);
f-=d; // 容量消耗
res+=d*dis[t]; // 计算本轮花费
for(int i=t;pv[i];i=pv[i]) {
EDGE& e=E[pv[i]][pe[i]];
e.w-=d;
E[i][e.r].w+=d;
} // 更新边的容量
}
return res;
}
int main()
{
while(~scanf("%d%d",&n,&m)) {
int s=, t=n;
for(int i=;i<m;i++) {
int u,v,c; scanf("%d%d%d",&u,&v,&c);
addE(u,v,,c); addE(v,u,,c);
// 建立u到v容量大小为1费用为c的边
}
printf("%d\n",minCFlow(s,t,));
// 求s到t传输大小为2(即最大容量为2)的最小费用流
} return ;
}

POJ 2135 /// 最小费用流最大流 非负花费 BellmanFord模板的更多相关文章

  1. hdu 6437 /// 最小费用最大流 负花费 SPFA模板

    题目大意: 给定n,m,K,W 表示n个小时 m场电影(分为类型A.B) K个人 若某个人连续看了两场相同类型的电影则失去W 电影时间不能重叠 接下来给定m场电影的 s t w op 表示电影的 开始 ...

  2. POJ - 2135最小费用流

    题目链接:http://poj.org/problem?id=2135 今天学习最小费用流.模板手敲了一遍. 产生了一个新的问题:对于一条无向边,这样修改了正向边容量后,反向边不用管吗? 后来想了想, ...

  3. POJ 2135 简单费用流

    题意:       题意是一个人他要从牧场1走到牧场n然后在走回来,每条路径只走一次,问全程的最短路径是多少. 思路:        这个题目挺简单的吧,首先要保证每条边只能走一次,然后还要要求费用最 ...

  4. poj 2135 (基础费用流)

    题意:从1到n再到1,每条边只能走一次,求最短距离. 建图:每条边只能走一次就是流量是1,添加源点与1相连,容量为2,费用为0,n与汇点相连容量为2,费用为0: 求增广路用SPFA最短路求,, #in ...

  5. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  6. POJ 2135 Farm Tour (最小费用最大流模板)

    题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...

  7. poj 2135 Farm Tour 【无向图最小费用最大流】

    题目:id=2135" target="_blank">poj 2135 Farm Tour 题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路 ...

  8. [实变函数]5.2 非负简单函数的 Lebesgue 积分

    1 设        $$\bex        \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0,        \eex$$ 其中     ...

  9. [实变函数]5.3 非负可测函数的 Lebesgue 积分

    本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集.       1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分      ...

随机推荐

  1. Qt4 QWebView的使用例子

    最近项目中使用QT4框架开发PC端软件,所以耐着性子学习了一下QT相关的东西. 下面是QT4中QWebView的使用方法,觉得蛮方便的. 我使用的开发环境是:Win7+Qt 4.8.5开发库+qtcr ...

  2. Linux NIO 系列(03) 非阻塞式 IO

    目录 一.非阻塞式 IO 附:非阻塞式 IO 编程 Linux NIO 系列(03) 非阻塞式 IO Netty 系列目录(https://www.cnblogs.com/binarylei/p/10 ...

  3. 利用单选框的单选特性作tab切换

    <RadioGroup v-model="selectType" type="button" @onchange="selectTypeChan ...

  4. 忘记root密码

    Ubuntu密码恢复的方法如下: 1.重新启动,按ESC键进入Boot Menu,选择recovery mode(一般是第二个选项).2.在#号提示符下用cat /etc/shadow,看看用户名.3 ...

  5. System.Web.Mvc 4.0.0.1 和 4.0.0.0 区别

    只是一个安全补丁的问题:  http://www.microsoft.com/zh-cn/download/details.aspx?id=44533&WT.mc_id=rss_alldown ...

  6. 换了SSD发现plank也好了

    我的Dock用的是plank,很简单很好用.为什么不用Docky还有其他什么玩意儿呢?plank很简单很好用,资源占用很少,可以智能隐藏,you nearly can't feel it but yo ...

  7. 前后台 工作切换---------------Linux 任务管理器(一)

    继续下一章... 发现了一个好东东.就是前后台的切换.例如我们现在要vim一个文件.然后又要查找一些命令的时候,以前不知道,都是退出后,查完了,在vim进入.现在我们可以将该vim拿到后台,然后查完了 ...

  8. 如何设置和使用MacOS上的Microsoft Office套件

    自30年前首次发布以来,Microsoft Office已成为全球最受欢迎的生产力套件之一.借助Word和Excel for Mac之类的程序,毫无疑问,MS Office套件在任何计算机上都是必须下 ...

  9. Delphi 实现最近打开文件记录菜单

    unit UntOpenMenu; //download by http://wwww.NewXing.com interface uses Windows, Messages, SysUtils, ...

  10. js (ECMAScript) 对数据处理的 方法、属性总结

    注意:原生类型的数据本身是没有属性.方法的.但是 有的原始类型(如 string),当他 调用属性或方法时,JS引擎会先对原始类型数据进行包装(即隐式的转换为相应的对象)  https://www.c ...