POJ 2135 /// 最小费用流最大流 非负花费 BellmanFord模板
题目大意:
给定一个n个点m条边的无向图
求从点1去点n再从点n回点1的不重叠(同一条边不能走两次)的最短路
挑战P239
求去和回的两条最短路很难保证不重叠
直接当做是由1去n的两条不重叠的最短路
这样就变成了由1去n流量为2的最小费用流
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int N=;
int n,m;
struct EDGE { int v,w,c,r; };
vector <EDGE> E[N];
void addE(int u,int v,int w,int c) {
E[u].push_back((EDGE){v,w,c,E[v].size()});
E[v].push_back((EDGE){u,,-c,E[u].size()-});
}
int dis[N], pv[N] ,pe[N];
int minCFlow(int s,int t,int f) {
int res=;
while(f>) {
/// Bellman-Ford求s到t最短路
memset(dis,INF,sizeof(dis));
memset(pv,,sizeof(pv));
dis[s]=;
bool upD=;
while(upD) {
upD=;
for(int i=;i<=n;i++) { // 通过i点
if(dis[i]==INF) continue;
for(int j=;j<E[i].size();j++) { // 更新E[i][j]点的最短路
EDGE& e=E[i][j];
if(e.w> && dis[e.v]>dis[i]+e.c) { // 边容量>0才能走
dis[e.v]=dis[i]+e.c; // 找到更短的路 更新
pv[e.v]=i, pe[e.v]=j; // 记录前驱点及边 便于通过e.v找到i点
upD=;
}
}
}
}
if(dis[t]==INF) return -; // s不能到t 不能增广 int d=f; // 找到本轮实际能够流出的流量(即实际用掉的容量)
for(int i=t;pv[i];i=pv[i])
d=min(d,E[pv[i]][pe[i]].w);
f-=d; // 容量消耗
res+=d*dis[t]; // 计算本轮花费
for(int i=t;pv[i];i=pv[i]) {
EDGE& e=E[pv[i]][pe[i]];
e.w-=d;
E[i][e.r].w+=d;
} // 更新边的容量
}
return res;
}
int main()
{
while(~scanf("%d%d",&n,&m)) {
int s=, t=n;
for(int i=;i<m;i++) {
int u,v,c; scanf("%d%d%d",&u,&v,&c);
addE(u,v,,c); addE(v,u,,c);
// 建立u到v容量大小为1费用为c的边
}
printf("%d\n",minCFlow(s,t,));
// 求s到t传输大小为2(即最大容量为2)的最小费用流
} return ;
}
POJ 2135 /// 最小费用流最大流 非负花费 BellmanFord模板的更多相关文章
- hdu 6437 /// 最小费用最大流 负花费 SPFA模板
题目大意: 给定n,m,K,W 表示n个小时 m场电影(分为类型A.B) K个人 若某个人连续看了两场相同类型的电影则失去W 电影时间不能重叠 接下来给定m场电影的 s t w op 表示电影的 开始 ...
- POJ - 2135最小费用流
题目链接:http://poj.org/problem?id=2135 今天学习最小费用流.模板手敲了一遍. 产生了一个新的问题:对于一条无向边,这样修改了正向边容量后,反向边不用管吗? 后来想了想, ...
- POJ 2135 简单费用流
题意: 题意是一个人他要从牧场1走到牧场n然后在走回来,每条路径只走一次,问全程的最短路径是多少. 思路: 这个题目挺简单的吧,首先要保证每条边只能走一次,然后还要要求费用最 ...
- poj 2135 (基础费用流)
题意:从1到n再到1,每条边只能走一次,求最短距离. 建图:每条边只能走一次就是流量是1,添加源点与1相连,容量为2,费用为0,n与汇点相连容量为2,费用为0: 求增广路用SPFA最短路求,, #in ...
- POJ 2135 Farm Tour (网络流,最小费用最大流)
POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...
- POJ 2135 Farm Tour (最小费用最大流模板)
题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...
- poj 2135 Farm Tour 【无向图最小费用最大流】
题目:id=2135" target="_blank">poj 2135 Farm Tour 题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路 ...
- [实变函数]5.2 非负简单函数的 Lebesgue 积分
1 设 $$\bex \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0, \eex$$ 其中 ...
- [实变函数]5.3 非负可测函数的 Lebesgue 积分
本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集. 1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分 ...
随机推荐
- QTP - excel操作
1. 以数据库的形式访问Excel 通常,我们与Excel的交互,是通过创建Excel对象的方式: Set ExcelApp = CreateObject("Excel.Applicatio ...
- ArrayList的几种初始化方法
1.使用Arrays.asList方法 ArrayList<Object> obj = new ArrayList<Object>(Arrays.asList(Object o ...
- adb 提示adb server version(31) doesn't match this client(40) 解决办法
有时候我们用adb工具去连接安卓设备,或者模拟器的时候,会提示adb server version(31) doesn't match this client(40)这样的提示.如图 提示的字面意思就 ...
- stdio - 标准输入输出库函数
SYNOPSIS 总览 #include <stdio.h> FILE *stdin; FILE *stdout; FILE *stderr; DESCRIPTION 描述 标注 I/O ...
- Android Studio在Ubuntu下离线安装Gradle
更新android studio3.0后又要升级gradle了,估计又要很长时间,晚上临走前跟开始更新下载,第二天一早发现又卡了,吐血. 在某CSDN下载gradle-4.1-all.zip,直接手动 ...
- codeforces847J Students Initiation 网络流
题目传送门 题意: 有n个人,m对关系,要求每对关系中,有且仅有一个人给另外一个人送礼物,并且使送出礼物最多的人送的礼物尽可能少.并输出送礼物的方案. 思路:这道题麻烦的是网络流模型的转换(废话). ...
- 神奇的Android Studio Template(转)
转自:http://blog.csdn.net/lmj623565791/article/details/51592043 本文已授权微信公众号:鸿洋(hongyangAndroid)在微信公众号平台 ...
- 基于React Native的跨三端应用架构实践
作者|陈子涵 编辑|覃云 “一次编写, 到处运行”(Write once, run anywhere ) 是很多前端团队孜孜以求的目标.实现这个目标,不但能以最快的速度,将应用推广到各个渠道,而且还能 ...
- node js实战:带数据库,加密的注册登录表单
demo 注册效果: 登陆效果: 数据库截图: 数据库操作 db.js //这个模块里面封装了所有对数据库的常用操作 var MongoClient = require('mongodb ...
- Laravel groupBy用法
// 假设model名是News:status启用是1:language选择cn: $data = News::select(array('id', 'title', 'type')) ->wh ...