题目大意:

给定一个n个点m条边的无向图

求从点1去点n再从点n回点1的不重叠(同一条边不能走两次)的最短路

挑战P239

求去和回的两条最短路很难保证不重叠

直接当做是由1去n的两条不重叠的最短路

这样就变成了由1去n流量为2的最小费用流

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int N=;
int n,m;
struct EDGE { int v,w,c,r; };
vector <EDGE> E[N];
void addE(int u,int v,int w,int c) {
E[u].push_back((EDGE){v,w,c,E[v].size()});
E[v].push_back((EDGE){u,,-c,E[u].size()-});
}
int dis[N], pv[N] ,pe[N];
int minCFlow(int s,int t,int f) {
int res=;
while(f>) {
/// Bellman-Ford求s到t最短路
memset(dis,INF,sizeof(dis));
memset(pv,,sizeof(pv));
dis[s]=;
bool upD=;
while(upD) {
upD=;
for(int i=;i<=n;i++) { // 通过i点
if(dis[i]==INF) continue;
for(int j=;j<E[i].size();j++) { // 更新E[i][j]点的最短路
EDGE& e=E[i][j];
if(e.w> && dis[e.v]>dis[i]+e.c) { // 边容量>0才能走
dis[e.v]=dis[i]+e.c; // 找到更短的路 更新
pv[e.v]=i, pe[e.v]=j; // 记录前驱点及边 便于通过e.v找到i点
upD=;
}
}
}
}
if(dis[t]==INF) return -; // s不能到t 不能增广 int d=f; // 找到本轮实际能够流出的流量(即实际用掉的容量)
for(int i=t;pv[i];i=pv[i])
d=min(d,E[pv[i]][pe[i]].w);
f-=d; // 容量消耗
res+=d*dis[t]; // 计算本轮花费
for(int i=t;pv[i];i=pv[i]) {
EDGE& e=E[pv[i]][pe[i]];
e.w-=d;
E[i][e.r].w+=d;
} // 更新边的容量
}
return res;
}
int main()
{
while(~scanf("%d%d",&n,&m)) {
int s=, t=n;
for(int i=;i<m;i++) {
int u,v,c; scanf("%d%d%d",&u,&v,&c);
addE(u,v,,c); addE(v,u,,c);
// 建立u到v容量大小为1费用为c的边
}
printf("%d\n",minCFlow(s,t,));
// 求s到t传输大小为2(即最大容量为2)的最小费用流
} return ;
}

POJ 2135 /// 最小费用流最大流 非负花费 BellmanFord模板的更多相关文章

  1. hdu 6437 /// 最小费用最大流 负花费 SPFA模板

    题目大意: 给定n,m,K,W 表示n个小时 m场电影(分为类型A.B) K个人 若某个人连续看了两场相同类型的电影则失去W 电影时间不能重叠 接下来给定m场电影的 s t w op 表示电影的 开始 ...

  2. POJ - 2135最小费用流

    题目链接:http://poj.org/problem?id=2135 今天学习最小费用流.模板手敲了一遍. 产生了一个新的问题:对于一条无向边,这样修改了正向边容量后,反向边不用管吗? 后来想了想, ...

  3. POJ 2135 简单费用流

    题意:       题意是一个人他要从牧场1走到牧场n然后在走回来,每条路径只走一次,问全程的最短路径是多少. 思路:        这个题目挺简单的吧,首先要保证每条边只能走一次,然后还要要求费用最 ...

  4. poj 2135 (基础费用流)

    题意:从1到n再到1,每条边只能走一次,求最短距离. 建图:每条边只能走一次就是流量是1,添加源点与1相连,容量为2,费用为0,n与汇点相连容量为2,费用为0: 求增广路用SPFA最短路求,, #in ...

  5. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  6. POJ 2135 Farm Tour (最小费用最大流模板)

    题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...

  7. poj 2135 Farm Tour 【无向图最小费用最大流】

    题目:id=2135" target="_blank">poj 2135 Farm Tour 题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路 ...

  8. [实变函数]5.2 非负简单函数的 Lebesgue 积分

    1 设        $$\bex        \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0,        \eex$$ 其中     ...

  9. [实变函数]5.3 非负可测函数的 Lebesgue 积分

    本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集.       1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分      ...

随机推荐

  1. os.walk|图片数据集

    该函数的功能:遍历指定文件夹下的所有[路径][文件夹][文件名] ''' os.walk(top[, topdown=True[, onerror=None[, followlinks=False]] ...

  2. 8种常见SQL错误用法,你中招了吗?

    作者:db匠 来源:https://yq.aliyun.com/articles/72501 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句, ...

  3. java final关键字详解

    final是java中保留关键字,可以声明成员变量.类.方法与本地变量,一旦引用final关键字,将不能再改变这个引用,编译器会检查代码,要是想改变该引用,会报错. final变量? 凡是对成员变量或 ...

  4. MQ入门介绍

    MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过写和检索出入列队的针对应用程序的数据(消息)来通信,而无需专用连接来链接它们.消息传递指的是程序 ...

  5. 使用openntpd替换ntpd

    系统自带的ntp服务太难用,systemd启动几次没启动起来,懒得折腾,换了openntpd一次成功.

  6. VMware虚拟机提示找不到vmnetbridge.dl文件的解决办法

    把vmware workstation删了重装,估计是异地安装包在安装时候出现的问题. 先把安装包拷贝到本地,然后控制面板上把已有的vmware workstation删除. 最后重新安装VMware ...

  7. 关于js中Ajax的同步、异步使用

    下面一个简单的例子,说明前后端交互中,Ajax同步和异步的使用 1.设置简单的一个div,包含触发事件 CompanyType() <div> <input type="h ...

  8. JavaWeb开发之一《Tomcat服务器的部署、安装及应用》

    搬以前写的博客[2014-12-10 21:43] 这几天做了一个Java的程序,然后先把他搭载到Web上,于是学习了基于Tomcat服务器的web开发,这里回顾一下Tomcat服务器的搭建过程. 1 ...

  9. SpringDataRedis依赖

    <dependencies>        <dependency>            <groupId>junit</groupId>       ...

  10. CF232E Quick Tortoise , Fzoj 3118

    这一题由于数据较多,我们考虑离线处理. 分治.对于两个点s,t,如果起点在mid这条横线上方,终点在下方,那么它必定会穿过mid这条线.所以只要s可以到mid上一点x,x可以到t,st就是安全的. 用 ...