hdu3507 Print Article[斜率优化dp入门题]
Print Article
Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 11761 Accepted Submission(s): 3586
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
5
9
5
7
5
大概题意就是要输出N个数字a[N],输出的时候可以连续连续的输出,每连续输出一串,它的费用是 “这串数字和的平方加上一个常数M”。
我们设dp[i]表示输出到i的时候最少的花费,sum[i]表示从a[1]到a[i]的数字和。于是方程就是:
dp[i]=dp[j]+M+(sum[i]-sum[j])^2;
很显然这个是一个二维的。题目的数字有500000个,不用试了,二维铁定超时了。那我们就来试试斜率优化吧,看看是如何做到从O(n^2)复杂度降到O(n)的。
分析:
我们假设k<j<i。如果在j的时候决策要比在k的时候决策好,那么也是就是dp[j]+M+(sum[i]-sum[j])^2<dp[k]+M+(sum[i]-sum[k])^2。(因为是最小花费嘛,所以优就是小于)
两边移项一下,得到:(dp[j]+num[j]^2-(dp[k]+num[k]^2))/(2*(num[j]-num[k]))<sum[i]。我们把dp[j]-num[j]^2看做是yj,把2*num[j]看成是xj。
那么不就是yj-yk/xj-xk<sum[i]么? 左边是不是斜率的表示?
那么yj-yk/xj-xk<sum[i]说明了什么呢? 我们前面是不是假设j的决策比k的决策要好才得到这个表示的? 如果是的话,那么就说明g[j,k]=yj-jk/xj-xk<sum[i]代表这j的决策比k的决策要更优。
关键的来了:现在从左到右,还是设k<j<i,如果g[i,j]<g[j,k],那么j点便永远不可能成为最优解,可以直接将它踢出我们的最优解集。为什么呢?
我们假设g[i,j]<sum[i],那么就是说i点要比j点优,排除j点。
如果g[i,j]>=sum[i],那么j点此时是比i点要更优,但是同时g[j,k]>g[i,j]>sum[i]。这说明还有k点会比j点更优,同样排除j点。
排除多余的点,这便是一种优化!
接下来看看如何找最优解。
设k<j<i。
由于我们排除了g[i,j]<g[j,k]的情况,所以整个有效点集呈现一种上凸性质,即k j的斜率要大于j i的斜率。

这样,从左到右,斜率之间就是单调递减的了。当我们的最优解取得在j点的时候,那么k点不可能再取得比j点更优的解了,于是k点也可以排除。换句话说,j点之前的点全部不可能再比j点更优了,可以全部从解集中排除。
于是对于这题我们对于斜率优化做法可以总结如下:
1,用一个单调队列来维护解集。
2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的上凸性质,即如果g[d,c]<g[c,b],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。
3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<sum[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head])。
#include<cstdio>
#define pf(x) ((x)*(x))
using namespace std;
const int N=5e5+;
int n,sum[N],q[N];
int m,f[N];
inline int gety(int j,int k){
return f[j]+pf(sum[j])-(f[k]+pf(sum[k]));
}
inline int getx(int j,int k){
return sum[j]-sum[k]<<;
}
int main(){
while(~scanf("%d%d",&n,&m)){
for(int i=;i<=n;i++) scanf("%d",sum+i),sum[i]+=sum[i-];
int h=,t=;q[t]=;
for(int i=;i<=n;i++){
for(;h<t&&gety(q[h+],q[h])<=sum[i]*getx(q[h+],q[h]);h++);
f[i]=f[q[h]]+pf(sum[i]-sum[q[h]])+m;
for(;h<t&&gety(i,q[t])*getx(q[t],q[t-])<=gety(q[t],q[t-])*getx(i,q[t]);t--);
q[++t]=i;
}
printf("%d\n",f[n]);
}
return ;
}
hdu3507 Print Article[斜率优化dp入门题]的更多相关文章
- [hdu3507 Print Article]斜率优化dp入门
题意:需要打印n个正整数,1个数要么单独打印要么和前面一个数一起打印,1次打印1组数的代价为这组数的和的平方加上常数M.求最小代价. 思路:如果令dp[i]为打印前i个数的最小代价,那么有 dp[i] ...
- HDU3507 Print Article —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-3507 Print Article Time Limit: 9000/3000 MS (Java/Others) Mem ...
- HDU3507 Print Article(斜率优化dp)
前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs. ...
- HDU3507 Print Article (斜率优化DP基础复习)
pid=3507">传送门 大意:打印一篇文章,连续打印一堆字的花费是这一堆的和的平方加上一个常数M. 首先我们写出状态转移方程 :f[i]=f[j]+(sum[i]−sum[j])2 ...
- hdu 3507 Print Article(斜率优化DP)
题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...
- Print Article /// 斜率优化DP oj26302
题目大意: 经典题 数学分析 G(a,b)<sum[i]时 a优于b G(a,b)<G(b,c)<sum[i]时 b必不为最优 #include <bits/stdc++.h& ...
- hdu 3507 Print Article —— 斜率优化DP
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3507 设 f[i],则 f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j]) + m ...
- hdu3507 Print Article(斜率DP优化)
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it ...
- hdu3507(初识斜率优化DP)
hdu3507 题意 给出 N 个数字,输出的时候可以选择连续的输出,每连续输出一串,它的费用是 这串数字和的平方加上一个常数 M. 分析 斜率优化dp,入门题. 参考 参考 得到 dp 方程后,发现 ...
随机推荐
- u3d fpsCounter
因为u3d自己的stats下面的fpscounter不是实际意义上的fps,所以看到demo的fpsCounter,把它改写为c#的 using UnityEngine;using System.Co ...
- 查看WEB服务器的连接数
查看WEB服务器的连接数 https://technet.microsoft.com/en-us/sysinternals/bb897437 tcpView
- HDU 3970 Harmonious Set 容斥欧拉函数
pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n 求连续整数[0,n), 中随意选一些数使得选出的 ...
- APK防反编译技术
APK防反编译技术 下载地址:地址 我们的APK实际上就是一个ZIP压缩文件,里面包括有一个classes.dex.我们编译后生成的程序代码就所有在那里了, 通过apktool等工具能够轻松地将它们反 ...
- lakala GradientBoostedTrees
/** * Created by lkl on 2017/12/6. */ import org.apache.spark.mllib.evaluation.BinaryClassificationM ...
- Redis Crackit漏洞利用和防护
注意:本文只是阐述该漏洞的利用方式和如何预防.根据职业道德和<中华人民共和国计算机信息系统安全保护条例>,如果发现的别人的漏洞,千万不要轻易入侵,这个是明确的违法的哦!!! 目前Redis ...
- C语言的结构体
举例,一个结构体的定义如下: typedef struct _foo { ]; int age; int sex; } foo; 对齐 如果直接对上面的结构体作sizeof()运算: printf( ...
- geoserver 地图性能和缓存
1.什么是GeoWebCache GeoWebCache是地图缓存软件公司成员开发的一个基于java的开源项目.和其他的缓存系统相似,它作为一个客户端和地图服务的代理.它可以单独部署,适用于任何基于W ...
- QT基础:QT 定时器学习
定时器在编程中经常要用到,有必要学习一下,记记笔记! Qt中定时器的使用有两种方法,一种是使用QObject类提供的定时器,还有一种就是使用QTimer类. 1.QObject中的定时器的使用,需要用 ...
- Apache POI HSSF,XSSF和SXSSF的区别
http://blog.csdn.net/benben_1678/article/details/39989683 写的很好,用SXSSF即可解决大数据量,内存占用过高问题