test20181016 B君的第一题
题意


分析
考场爆零做法
考虑位数少的一定更小,高位小的一定更少。
然后计算一定位数下不同数字的个数,然后从高到低依次确定数位。
特例:如果确定的高位的后缀出现了x,那么要把x调整到后缀去,这样一定更优。
然而这样做有问题,有重复的情况,譬如样例1的6666。
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#pragma GCC optimize ("O0")
using namespace std;
template<class T> inline T read(T&x)
{
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return x=data*w;
}
typedef long long ll;
const int INF=0x7fffffff;
const int MAXN=2e3+7;
char X[MAXN],ans[MAXN];
int len;
ll n;
int main()
{
freopen("python.in","r",stdin);
freopen("python.out","w",stdout);
scanf("%s",X+1);
len=strlen(X+1);
read(n);
if(n==1)
{
puts(X+1);
return 0;
}
n-=1;
int lim;
for(lim=1;;++lim)
{
ll sum=(ll)lim*9*pow(10,lim-1)+pow(10,lim);
cerr<<"lim="<<lim<<" sum="<<sum<<endl;
if(n>sum)
n-=sum;
else
break;
}
cerr<<"n="<<n<<" lim="<<lim<<endl;
for(int i=1;i<=lim;++i)
{
cerr<<"i="<<i<<endl;
for(int j=(i==1?1:0);j<=9;++j)
{
ll sum=(ll)(lim-i+1)*pow(10,lim-i);
// cerr<<" j="<<j<<" sum="<<sum<<endl;
if(n>sum)
n-=sum;
else
{
ans[i]=j+'0';
ans[i+1]=0;
break;
}
if(j==9)
abort();
}
cerr<<"ansi="<<ans[i]<<endl;
if(i>=len&&strcmp(ans+i-len+1,X+1)==0)
{
// cerr<<"n="<<n<<endl;
int j;
for(j=lim+len;n;--j,n/=10)
{
ans[j]=n%10+'0';
}
for(;j>i;--j)
{
ans[j]='0';
}
puts(ans+1);
return 0;
}
}
printf("%s%s",ans+1,X+1);
// fclose(stdin);
// fclose(stdout);
return 0;
}
标解
毕姥爷太强了。
匹配字符串,考虑自动机上dp。
构造对x的KMP自动机,只是末尾位置的trans均指向末尾。
那么如果数字中出现过x,自动机上跑出来一定在末尾位置。
记\(f(i,j)\)表示从状态j走i步走到末尾位置上的方案数。写出转移方程:
\]
边界条件\(f(0,\textrm{maxstate})=1\)
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#pragma GCC optimize ("O0")
using namespace std;
template<class T> inline T read(T&x)
{
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return x=data*w;
}
typedef long long ll;
typedef unsigned long long ull;
const ll INF=(1ULL << 63) - 1;
const int MAXN=2e3+20;
char s[MAXN];
ll n;
int nx[MAXN];
int trans[MAXN][MAXN];
ull f[MAXN][MAXN];
int main()
{
freopen("python.in","r",stdin);
freopen("python.out","w",stdout);
scanf("%s",s+1);
int l=strlen(s+1);
// 处理next数组
int p=0;
for(int i=2;i<=l;++i)
{
while(p && s[p+1] != s[i])
{
p = nx[p];
}
if(s[p+1] == s[i])
{
++p;
}
nx[i]=p;
}
for(int i=0;i<l;++i) // 处理trans转移数组
for(int j=0;j<10;++j)
{
p = i;
while(p && s[p + 1] != j + '0')
{
p = nx[p];
}
if(s[p + 1] == j + '0')
{
++p;
}
trans[i][j] = p;
}
for(int i=0;i<10;++i)
{
trans[l][i]=l;
}
f[0][l]=1;
for(int i=1;i<2015;++i) // 2015是估计值
for(int j=0;j<=l;++j)
for(int k=0;k<10;++k)
{
f[i][j] += f[i-1][trans[j][k]];
if(f[i][j] > INF)
{
f[i][j] = INF;
}
}
read(n);
int lim;
for(lim=1;lim < 2015 && f[lim][0] < n;++lim);
p=0;
for(int i=lim,j;i;--i)
{
for(j=0;j<10;++j)
{
if(n > f[i-1][trans[p][j]])
n -= f[i-1][trans[p][j]];
else
break;
}
printf("%d",j);
p = trans[p][j];
}
puts("");
// fclose(stdin);
// fclose(stdout);
return 0;
}
test20181016 B君的第一题的更多相关文章
- test20181017 B君的第一题
题意 分析 考场做法 对p的幂打表发现,我们一定可以把x和y的二进制位从低到高依次调整成0. 具体而言,从0次幂开始每两个分为一组a,b,那么0,a,b,a+b组合中的一种可以将x,y的对应二进制位都 ...
- test20181016 B君的第二题
题意 分析 考场暴力50分. 考虑bfs序,一个点的儿子节点的bfs序一定连续,所以对bfs序建线段树,努力打一下就行了. 时间复杂度\(O(n \log n + m \log n)\) #inclu ...
- test20181018 B君的第一题
题意 分析 考场爆零做法 考虑dp,用\(f(i,j,0/1)\)表示i及其子树中形成j个边连通块的方案数,其中i是否向外连边. \(O(n^3)\),转移方程太复杂就打挂了. #include< ...
- test20181020 B君的第一题
题意 分析 二次剩余问题. x,y相当于二次方程 \[ x^2-bx+c=0 \mod{p} \] 的两根. 摸意义下的二次方程仍然考虑判别式\(\Delta=b^2-4c\). 它能开根的条件是\( ...
- test20181019 B君的第一题
题意 分析 考场做法同标解. 画图模拟分析发现,无论操作顺序怎样,操作数的奇偶性是不变的. 所以等同求出,以每点为根的操作数奇偶性. 用\(f(x)\)表示x及其子树中的边,包括x到它fa的边,将他们 ...
- [算法 笔记]2014年去哪儿网 开发笔试(续)第一题BUG修正
上一篇的blog地址为:http://www.cnblogs.com/life91/p/3313868.html 这几天又参加了一个家公司的笔试题,在最后的编程题中竟然出现了去哪儿网开发的第一题,也就 ...
- 《学习OpenCV》练习题第五章第一题ab
这道题是载入一幅带有有趣纹理的图像并用不同的模板(窗口,核)大小做高斯模糊(高斯平滑),然后比较用5*5大小的窗口平滑图像两次和用11*11大小的窗口平滑图像一次是否接近相同. 先说下我的做法,a部分 ...
- 《学习OpenCV》练习题第四章第一题b&c
#include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...
- 《学习OpenCV》练习题第四章第一题a
#include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...
随机推荐
- C++数组引用
C++数组引用 一.数组引用 C++数组的引用:引用即别名这样比指针传地址方便多了 形参中的(&a)[10]可以就看做a数组的别名,肯定要指定数组大小,如果没有后面的数组大小,天知道是变量还是 ...
- 转发一篇分析LinQ是什么?
LINQ(发音:Link)是语言级集成查询(Language INtegrated Query) ?LINQ是一种用来进行数据访问的编程模型,使得.NET语言可以直接支持数据查询 ?LINQ的目标是降 ...
- English trip -- VC(情景课)9 B Outside chores 室外家务
Vocabulary focus 核心词汇 cutting the grass 修剪草坪 getting the mail 收到邮件 taking out the trash 把垃圾带出去 wal ...
- js下载图片
DownloadImgZP = imgPath => { const image = new Image(); // 解决跨域 Canvas 污染问题 image.setAttribute('c ...
- Tree CodeForces - 1111E (树,计数,换根)
大意: 给定树, 多组询问, 每个询问给出一个点集$S$, 给定$m, r$, 求根为$r$时, $S$的划分数, 满足 每个划分大小不超过$m$ 每个划分内不存在一个点是另一个点的祖先 设点$x$的 ...
- MySQL解析过程、执行过程
转载:https://student-lp.iteye.com/blog/2152601 https://www.cnblogs.com/cdf-opensource-007/p/6502556.ht ...
- JavaScript学习总结(十九)——使用js加载器动态加载外部Javascript文件
今天在网上找到了一个可以动态加载js文件的js加载器,具体代码如下: JsLoader.js 1 var MiniSite=new Object(); 2 /** 3 * 判断浏览器 4 */ 5 M ...
- en_a
1◆ai ay ei 2◆ au aw ɔː 3◆ a eɪ æ ɑː ɔː ʌ 4◆ ar ɔː ɑː ɜː 5◆ al ɑː ɔː 6◆ are air ...
- 基于高通 qca4531 mp3 demo板 双系统引导设计
为了系统和稳定性,flash上有两套系统.在uboot引导阶段会根据当前的bootslot变量,决择运行哪套系统.进入系统之后,会自动挂载数据区,然后启动开关的应用程序. 如上图所示系统有两块存储芯片 ...
- 什么是 SSO 与 CAS?
SSO SSO 是英文 Single Sign On 的缩写,翻译过来就是单点登录.顾名思义,它把两个及以上个产品中的用户登录逻辑抽离出来,达到只输入一次用户名密码,就能同时登录多个产品的效果. 打个 ...