2019HDU多校第九场 Rikka with Quicksort —— 数学推导&&分段打表
题意
设
$$g_m(n)=\begin{cases}
& g_m(i) = 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \leq i \leq m\\
& g_m(i) = i-1 + \frac{1}{i}\sum _{j=1}^i(g_m(j) + g_m(i-j)), \ \ i > m\\
\end{cases}$$
现给出 $n$ 和 $m$,求 $g_m(n)$ 模 $1000000007$.
分析
当 $n>m$ 时,易知 $a_n = n-1 + \frac{2}{n} S_{n-1}$,
即 $S_n - S_{n-1} = n-1 + \frac{2}{n} S_{n-1}$,
变形得 $\frac{S_n}{(n+1)(n+2)} = \frac{n-1}{(n+1)(n+2)} + \frac{S_{n-1}}{n(n+1)}$.
令 $b_n = \frac{S_n}{(n+1)(n+2)}$,得 $b_n = \frac{n-1}{(n+1)(n+2)} + b_{n-1}$,
变形 $b_n - b_{n-1} = \frac{3}{n+2} - \frac{2}{n+1} = 2(\frac{1}{n+2}-\frac{1}{n+1}) + \frac{1}{n+2}$,
根据裂项相消得 $b_n - b_m = 2(\frac{1}{n+2} - \frac{1}{m+2}) + \frac{1}{m+3} + \frac{1}{m+4}+...+\frac{1}{n+2}$,
即 $b_n = 2(\frac{1}{n+2} - \frac{1}{m+2}) + S(n+2)-S(m+2)$.
其中 $S(n)$ 表示前 $n$ 个倒数和,可以分段打表。
( $1e4$ 的表虽然不会超内存限制,但是会超代码长度限制www,最后改成2000
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll mod = ;
const int maxn = 1e9 + ;
const int siz = ; //
int f[maxn/siz+] = {{,,,,,,,...} //省略了
ll n, m; ll qpow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
if(b&) ret = ret * a % p;
a = a * a % p;
b >>= ;
}
return ret;
} ll inv(ll n)
{
return qpow(n, mod-, mod);
} ll S(ll n)
{
int k = n / siz; //printf("%d\n", k);
ll tmp = f[k];
for(int i = k*siz+;i <= n;i++) tmp = (tmp + inv(i)) % mod;
return tmp;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n, &m);
ll bn = (*(inv(n+) - inv(m+)) + S(n+) - S(m+)) % mod;
ll bn_1 = (*(inv(n+) - inv(m+)) + S(n+) - S(m+)) % mod;
ll sn = (n+) * (n+) % mod * bn % mod;
ll sn_1 = n * (n+) % mod * bn_1 % mod;
printf("%lld\n", (sn - sn_1 + *mod) % mod);
}
}
参考链接:https://blog.csdn.net/baiyifeifei/article/details/99892190
2019HDU多校第九场 Rikka with Quicksort —— 数学推导&&分段打表的更多相关文章
- 2018多校第九场1010 (HDU6424) 数学
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6424 解法:找规律.因为最多三项,a1^a2^a3可以拆成(a1+2)+(a2+1)*a3,然后建成数 ...
- 218多校第九场 HDU 6424 (数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6424 题意:定义f(A) = log log log log …. (A个log) n ,g[A,B, ...
- 2019HDU多校第一场1001 BLANK (DP)(HDU6578)
2019HDU多校第一场1001 BLANK (DP) 题意:构造一个长度为n(n<=10)的序列,其中的值域为{0,1,2,3}存在m个限制条件,表示为 l r x意义为[L,R]区间里最多能 ...
- 【杂题总汇】HDU2018多校赛第九场 Rikka with Nash Equilibrium
[HDU2018多校赛第九场]Rikka with Nash Equilibrium 又是靠这样一道题擦边恰好和第两百名分数一样~愉快
- 2018 Multi-University Training Contest 9 杭电多校第九场 (有坑待补)
咕咕咕了太久 多校博客直接从第三场跳到了第九场orz 见谅见谅(会补的!) 明明最后看下来是dp场 但是硬生生被我们做成了组合数专场…… 听说jls把我们用组合数做的题都用dp来了遍 这里只放了用组 ...
- 2019年牛客多校第一场B题Integration 数学
2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...
- 杭电多校第九场 hdu6425 Rikka with Badminton 组合数学 思维
Rikka with Badminton Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/O ...
- Rikka with Game[技巧]----2019 杭电多校第九场:1005
Rikka with Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Othe ...
- 杭电多校第九场 hdu6424 Rikka with Time Complexity 数学
Rikka with Time Complexity Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
随机推荐
- Python13之元组(带上枷锁的列表)
一.元组定义 元组一旦建立,元组内的元素不允许修改和删除,这就是元组和列表最大的区别 当元组中仅有一个元素时,需要将元素后面加上逗号,或者不用括号也可以. tuple1 = (12,3234,5435 ...
- 剑指offer54:字符流中第一个不重复的字符
1 题目描述 请实现一个函数用来找出字符流中第一个只出现一次的字符.例如,当从字符流中只读出前两个字符"go"时,第一个只出现一次的字符是"g".当从该字符流中 ...
- golang之new函数
另一个创建变量的方法是调用用内建的new函数.表达式new(T)将创建一个T类型的匿名变量,初始化为T类型的零值,然后返回变量地址,返回的指针类型为 *T . p := new(int) // p, ...
- c++实现双端队列
在使用c++容器的时候其底层如何实现 例如 vector 容器 :是一个内存可以二倍扩容的向量容器,使用方便但是对内存要求严格,弊端明显 list 容器 : 双向循环链表 deq ...
- ALV报表——ALV颜色设置(三)
目录 一.行 二.列 三.单元格 四.附ALV的颜色代码 一.行:用Layout相关属性设置 代码: *Report ZRFI001_XFL_TEST REPORT ZRFI001_XFL_TEST ...
- Echarts设置y轴值间隔 以及设置 barWidth : 30,//柱图宽度
需求:如图,y轴之间的距离太小,这样就太过于拥挤了,现在要修改echarts里面的属性,设置y轴值间隔让图表看上去舒服一些. 其实很多问题,真的只是因为自己没有好好的看文档,很多文档上面都写的 ...
- PB数据窗口分页
第一步:增加一个计算列,此计算列必须放在Detail段,Expression中输入: ceiling(getrow()/500) --这里500还可以用全局函数取代,这样可以允许用户任意设置每页多少 ...
- session和cookie有什么区别?
1.存储位置不同 cookie的数据信息存放在客户端浏览器上. session的数据信息存放在服务器上. 2.存储容量不同 单个cookie保存的数据<=4KB,一个站点最多保存20个Cooki ...
- Java 处理异常 9 个最佳实践,你知道几个?
1. 在Finally中清理资源或者使用Try-With-Resource语句 使用Finally Java 7的Try-With-Resource语句 2. 给出准确的异常处理信息 3. 记录你所指 ...
- 优秀的java 社区
并发编程网 - ifeve.com InfoQ - 促进软件开发领域知识与创新的传播开源中国 - 找到您想要的开源项目,分享和交流IBM developerWorks 中国 : IBM's resou ...