2019HDU多校第九场 Rikka with Quicksort —— 数学推导&&分段打表
题意
设
$$g_m(n)=\begin{cases}
& g_m(i) = 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \leq i \leq m\\
& g_m(i) = i-1 + \frac{1}{i}\sum _{j=1}^i(g_m(j) + g_m(i-j)), \ \ i > m\\
\end{cases}$$
现给出 $n$ 和 $m$,求 $g_m(n)$ 模 $1000000007$.
分析
当 $n>m$ 时,易知 $a_n = n-1 + \frac{2}{n} S_{n-1}$,
即 $S_n - S_{n-1} = n-1 + \frac{2}{n} S_{n-1}$,
变形得 $\frac{S_n}{(n+1)(n+2)} = \frac{n-1}{(n+1)(n+2)} + \frac{S_{n-1}}{n(n+1)}$.
令 $b_n = \frac{S_n}{(n+1)(n+2)}$,得 $b_n = \frac{n-1}{(n+1)(n+2)} + b_{n-1}$,
变形 $b_n - b_{n-1} = \frac{3}{n+2} - \frac{2}{n+1} = 2(\frac{1}{n+2}-\frac{1}{n+1}) + \frac{1}{n+2}$,
根据裂项相消得 $b_n - b_m = 2(\frac{1}{n+2} - \frac{1}{m+2}) + \frac{1}{m+3} + \frac{1}{m+4}+...+\frac{1}{n+2}$,
即 $b_n = 2(\frac{1}{n+2} - \frac{1}{m+2}) + S(n+2)-S(m+2)$.
其中 $S(n)$ 表示前 $n$ 个倒数和,可以分段打表。
( $1e4$ 的表虽然不会超内存限制,但是会超代码长度限制www,最后改成2000
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll mod = ;
const int maxn = 1e9 + ;
const int siz = ; //
int f[maxn/siz+] = {{,,,,,,,...} //省略了
ll n, m; ll qpow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
if(b&) ret = ret * a % p;
a = a * a % p;
b >>= ;
}
return ret;
} ll inv(ll n)
{
return qpow(n, mod-, mod);
} ll S(ll n)
{
int k = n / siz; //printf("%d\n", k);
ll tmp = f[k];
for(int i = k*siz+;i <= n;i++) tmp = (tmp + inv(i)) % mod;
return tmp;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n, &m);
ll bn = (*(inv(n+) - inv(m+)) + S(n+) - S(m+)) % mod;
ll bn_1 = (*(inv(n+) - inv(m+)) + S(n+) - S(m+)) % mod;
ll sn = (n+) * (n+) % mod * bn % mod;
ll sn_1 = n * (n+) % mod * bn_1 % mod;
printf("%lld\n", (sn - sn_1 + *mod) % mod);
}
}
参考链接:https://blog.csdn.net/baiyifeifei/article/details/99892190
2019HDU多校第九场 Rikka with Quicksort —— 数学推导&&分段打表的更多相关文章
- 2018多校第九场1010 (HDU6424) 数学
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6424 解法:找规律.因为最多三项,a1^a2^a3可以拆成(a1+2)+(a2+1)*a3,然后建成数 ...
- 218多校第九场 HDU 6424 (数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6424 题意:定义f(A) = log log log log …. (A个log) n ,g[A,B, ...
- 2019HDU多校第一场1001 BLANK (DP)(HDU6578)
2019HDU多校第一场1001 BLANK (DP) 题意:构造一个长度为n(n<=10)的序列,其中的值域为{0,1,2,3}存在m个限制条件,表示为 l r x意义为[L,R]区间里最多能 ...
- 【杂题总汇】HDU2018多校赛第九场 Rikka with Nash Equilibrium
[HDU2018多校赛第九场]Rikka with Nash Equilibrium 又是靠这样一道题擦边恰好和第两百名分数一样~愉快
- 2018 Multi-University Training Contest 9 杭电多校第九场 (有坑待补)
咕咕咕了太久 多校博客直接从第三场跳到了第九场orz 见谅见谅(会补的!) 明明最后看下来是dp场 但是硬生生被我们做成了组合数专场…… 听说jls把我们用组合数做的题都用dp来了遍 这里只放了用组 ...
- 2019年牛客多校第一场B题Integration 数学
2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...
- 杭电多校第九场 hdu6425 Rikka with Badminton 组合数学 思维
Rikka with Badminton Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/O ...
- Rikka with Game[技巧]----2019 杭电多校第九场:1005
Rikka with Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Othe ...
- 杭电多校第九场 hdu6424 Rikka with Time Complexity 数学
Rikka with Time Complexity Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
随机推荐
- Linux如何查看进程、杀死进程、启动进程
1.查看进程:ps命令 下面的命令还没实践,仅仅供你参考:可以用man ps查看格式,只不过是一个小工具而已! ps a 显示现行终端机下的所有程序,包括其他用户的程序. ps -A 显示所有程 ...
- [转帖]AMD三代锐龙线程撕裂者命名曝光:24核心3960X
AMD三代锐龙线程撕裂者命名曝光:24核心3960X https://www.cnbeta.com/articles/tech/900271.htm 一直搞不懂TDP啥意思 可能会高于TDP的功率.. ...
- 【leecode】 Course Schedule
class Solution { public: static bool canFinish(int numCourses, vector<pair<int, int>>&am ...
- Spring Boot 集成 Swagger生成接口文档
目的: Swagger是什么 Swagger的优点 Swagger的使用 Swagger是什么 官网(https://swagger.io/) Swagger 是一个规范和完整的框架,用于生成.描述. ...
- Linux下磁盘分区,格式化以及挂载
测试环境:VMware Workstation / centos7 1.磁盘分区 (1)易于管理和使用: 比如说我们把磁盘分了sda1.sda2.sda3.sda4盘,我们假设sda1盘为系统盘,其他 ...
- flutter从入门到精通三
flutter可以通过一套代码运行在多个平台上,包括移动,web,桌面,嵌入式,但是在 Web 平台的支持尚未达到 Beta 阶段,请不要用在生产环节,在阅读文档时候,推荐大家阅读https://fl ...
- Spring Cloud Alibaba学习笔记(14) - Spring Cloud Stream + RocketMQ实现分布式事务
发送消息 在Spring消息编程模型下,使用RocketMQ收发消息 一文中,发送消息使用的是RocketMQTemplate类. 在集成了Spring Cloud Stream之后,我们可以使用So ...
- javascript序列化表单追加参数
js序列化表单后追加参数方式: 追加参数:token,status var data = $.param({"token":token, "status":st ...
- C#正则表达式根据分组命名取值
string[] regexList = new string[] { @"^(?<TickerPart1>[0-9A-Z])[ 0_]?(?<TickerPart2> ...
- ECMAScript5面向对象技术(1)--原始类型和引用类型
概述 大多数开发者在使用Java或C#等基于类的语言的过程中学会了面向对象编程.由于JavaScript没有对类的正式支持,这些开发者在学习JavaScript时往往会迷失方向: JavaScript ...