Minimum Score Triangulation of Polygon
Given N, consider a convex N-sided polygon with vertices labelled A[0], A[i], ..., A[N-1] in clockwise order.
Suppose you triangulate the polygon into N-2 triangles. For each triangle, the value of that triangle is the product of the labels of the vertices, and the total score of the triangulation is the sum of these values over all N-2triangles in the triangulation.
Return the smallest possible total score that you can achieve with some triangulation of the polygon.
Example 1:
Input: [1,2,3]
Output: 6
Explanation: The polygon is already triangulated, and the score of the only triangle is 6.
Example 2:

Input: [3,7,4,5]
Output: 144
Explanation: There are two triangulations, with possible scores: 3*7*5 + 4*5*7 = 245, or 3*4*5 + 3*4*7 = 144. The minimum score is 144.
Example 3:
Input: [1,3,1,4,1,5]
Output: 13
Explanation: The minimum score triangulation has score 1*1*3 + 1*1*4 + 1*1*5 + 1*1*1 = 13. 分析:https://leetcode.com/problems/minimum-score-triangulation-of-polygon/discuss/286753/C%2B%2B-with-picture
If we pick a side of our polygon, it can form n - 2 triangles. Each such triangle forms 2 sub-polygons. We can analyze n - 2 triangles, and get the minimum score for sub-polygons using the recursion.
This is how this procedure looks for a sub-polygon (filled with diagonal pattern above).

Top-Down Solution
• Fix one side of the polygon i, j and move k within (i, j).
• Calculate score of the i, k, j "orange" triangle.
• Add the score of the "green" polygon i, k using recursion.
• Add the score of the "blue" polygon k, j using recursion.
• Use memoisation to remember minimum scores for each sub-polygons.
class Solution {
public int minScoreTriangulation(int[] arr) {
int len = arr.length;
int[][] lookup = new int[len][len];
return minScoreFromTo(arr, , len - , lookup);
}
private int minScoreFromTo(int[] arr, int from, int to, int[][] lookup) {
if (from >= to || from + == to) {
return ;
}
if (lookup[from][to] > ) {
return lookup[from][to];
}
lookup[from][to] = Integer.MAX_VALUE;
for (int mid = from + ; mid < to; mid++) {
lookup[from][to] = Math.min(lookup[from][to], arr[mid] * arr[from] * arr[to] + minScoreFromTo(arr, from, mid, lookup)
+ minScoreFromTo(arr, mid, to, lookup));
}
return lookup[from][to];
}
}
Minimum Score Triangulation of Polygon的更多相关文章
- LeetCode 1039. Minimum Score Triangulation of Polygon
原题链接在这里:https://leetcode.com/problems/minimum-score-triangulation-of-polygon/ 题目: Given N, consider ...
- 【leetcode】1039. Minimum Score Triangulation of Polygon
题目如下: Given N, consider a convex N-sided polygon with vertices labelled A[0], A[i], ..., A[N-1] in c ...
- leetcode_1039. Minimum Score Triangulation of Polygon_动态规划
https://leetcode.com/problems/minimum-score-triangulation-of-polygon/ 题意:给定一个凸的N边形(N<=50),每个顶点有一个 ...
- Leetcode 第135场周赛解题报告
这周比赛的题目很有特点.几道题都需要找到一定的技巧才能巧妙解决,和以往靠数据结构的题目不太一样. 就是如果懂原理,代码会很简单,如果暴力做,也能做出来,但是十分容易出错. 第四题还挺难想的,想了好久才 ...
- leetcode动态规划题目总结
Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...
- LabVIEW部分视觉函数中文解说
IMAQ Learn Pattern 2 VI 在匹配阶段创建您要搜索的图案匹配的模板图像的描述,此描述的数据被附加到输入模板图像中.在匹配阶段,从模板图像中提取模板描述符并且用于从检查图像中搜索模板 ...
- UVALive 7147 World Cup(数学+贪心)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
- Quiz(贪心,快速幂乘)
C. Quiz time limit per test 1 second memory limit per test 256 megabytes input standard input output ...
- codeforces 337C Quiz(贪心)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Quiz Manao is taking part in a quiz. The ...
随机推荐
- http支持上传文件夹
核心原理: 该项目核心就是文件分块上传.前后端要高度配合,需要双方约定好一些数据,才能完成大文件分块,我们在项目中要重点解决的以下问题. * 如何分片: * 如何合成一个文件: * 中断了从哪个分片开 ...
- VirtualBox:无法访问共享文件夹
造冰箱的大熊猫@cnblogs 2019/5/9 问题:VirtualBox中安装Linux虚拟机,设置宿主机某个文件夹为虚拟机的共享文件夹.在虚拟机中,该共享文件夹显示为“sf_×××”,打开该文件 ...
- go基本使用
一.第一个go语言程序 1.新建一个go项目:File--New--Progect 2.新建一个Go文件:File--New--Go File 3.在编辑区内写入下列代码: package main ...
- centos后台运行python程序
在服务器上,为了退出终端,程序依然能够运行,需要设置程序在后台运行. 关键的命令:nohup *基本用法:进入要运行的py文件目录前 nohup python -u test.py > tes ...
- 火焰图分析CPU性能问题
1.找出应用程序或内核消耗CPU的PID 2.执行perf record 命令,记录该PID的行为 perf record -a -g -p 14851 -- sleep 30 --30秒后退出 3. ...
- 原生Js_实现广告弹窗
广告样式当页面加载后5s刷新在右下角 <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...
- phpcms9 从注入点入手和 从前台getshell
弄了3天了 这个点 总结一下这三天的坑吧 0X01 注入点入手 /index.php?m=wap&c=index&a=init&siteid=1 获取cookie 传给 us ...
- 0.JQuery学习
jQuery 教程 jQuery 是一个 JavaScript 库. jQuery 极大地简化了 JavaScript 编程. jQuery 简介 jQuery 库可以通过一行简单的标记被添加到网页中 ...
- JavaScript数字计算精度丢失的问题和解决方案
一.JS数字精度丢失的一些典型问题 1. 两个简单的浮点数相加:0.1 + 0.2 != 0.3 // true,下图是firebug的控制台截图: 看看java的计算结果:是不是让你很不能接受 再来 ...
- springboot+dubbo+zookeeper+mybatis
参考地址:https://www.cnblogs.com/gaopengfirst/p/9555240.html 首先创建一个maven项目: 再在该父项目中创建3个module,分别是:provid ...