插值:求过已知有限个数据点的近似函数

拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下在这些点的误差最小

(一)插值方法

一、拉格朗日多项式插值

1、插值多项式

就是做出一个多项式函数,经过给出的n个节点,并尽可能的接近原函数,将点带入多项式函数得到一个线性方程组

当系数矩阵满秩时,有唯一解。而,系数矩阵的行列式为

这是一个范德蒙德行列式,只要各个节点不同时,行列式就不为0,因此可得,一定能够解出系数方程

还有些指标

2、拉格朗日插值多项式

3、MATLAB实现

function y=lagrange(x0,y0,x)
%n个数据以数组x0,y0输入,m个插值点以数组x输入,输出数组y为m个插值。
n=length(x0);m=length(x);
for i=m;
z=x(i);
s=0.0;
for k=1:n
p=1.0;
for j=1:n;
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end

二、牛顿插值

1、差商

2、牛顿插值公式

有点就是,多一个数据点,只多一项

PS:

3、差分

4、等距节点插值公式

三、分段线性插值

1、插值多项式的振荡

即如果插值多项式的次数越高,越容易发生振荡,不能很好的拟合。

2、分段线性插值

3、MATLAB实现

四、Hermite插值

1、Hermite插值多项式

2、MATLAB实现

function y-hermite(x0,y0,y1,x);
%x0,y0为样本点数据,y1为导数指,m个插值点以数组x输入,输出数组y为m个插值
n=length(x0);m=length(x);
for k=1:m;
yy=0.0;
for i=1:n
h=1.0;
a=0.0;
for j=i:n
if j~=i
h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2;
a=1/(x0(i)-x0(j))+a;
end
end
yy=yy+h*((x0(i)-x0(k))*(2*a*y0(i)-y(i))+y0(i));
end
y(k)=yy;
end

五、样条插值

1、概念

实际中最常用的是k=2和k=3的情况

二、二次样条函数插值

二次样条函数有n+2个待定常数,所以要有n+2个条件,才能有唯一解

一定要有一个条件为一阶导数

三、三次样本函数插值

二次样条函数有n+3个待定常数,所以要有n+3个条件,才能有唯一解

四、三次插值在MATLAB中的实现

部分转载

1、y=interp1(x0,y0,x,`spline`);     % (spline改成linear,则变成线性插值)

2、y=spline(x0,y0,xi);%这个是根据己知的x,y数据,用样条函数插值出xi处的值。即由x,y的值计算出xi对应的函数值。

3、pp=spline(x0,y0);%是由根据己知的x,y数据,求出它的样条函数表达式,不过该表达式不是用矩阵直接表示,要求点x`的值,要用函数y`=ppval(pp,x`);

4、pp=csape(x,y,'变界类型','边界值conds');生成各种边界条件的三次样条插值. 其中,(x,y)为数据向量,边界类型可为:

'complete':给定边界一阶导数,即默认的边界条件,Lagrange边界条件
             'not-a-knot':非扭结条件,不用给边界值.
             'periodic':周期性边界条件,不用给边界值.
             'second':给定边界二阶导数.
             'variational':自然样条(边界二阶导数为[0,0]。

五、demo

%转载= =
clear,clc
x0=[0,3,5,7,9,11,12,13,14,15];
y0=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6];
t=0:0.05:15;
%拉格朗日插值函数
y1=lagrange(x0,y0,t);%调用编写的lagrange函数
dy1=(lagrange(x0,y0,0.0001)-lagrange(x0,y0,0))/0.0001%x=0处斜率
min1=min(lagrange(x0,y0,13:0.001:15))%13到15最小值
subplot(2,2,1);
plot(x0,y0,'ro',t,y1);%画出曲线
title('拉格朗日插值函数');
%分段线性插值
y2=interp1(x0,y0,t,'spline');%注意区分spline与linear
Y2=interp1(x0,y0,t);%默认linear
dy2=(interp1(x0,y0,0.0001,'spline')-interp1(x0,y0,0,'spline'))/0.0001%x=0处斜率
min2=min(interp1(x0,y0,13:0.001:15,'spline'))%13到15最小值
subplot(2,2,2);
plot(t,y2,'b',t,Y2,'r',x0,y0,'ro');%画出曲线
title('分段线性插值');
legend('边条','线性');%显示图形图例
%三次线条插值A
y3=spline(x0,y0,t);
dy3=(spline(x0,y0,0.0001)-spline(x0,y0,0))/0.0001%x=0处斜率
min3=min(spline(x0,y0,13:0.001:15))%13到15最小值
subplot(2,2,3);
plot(x0,y0,'ro',t,y3);%画出曲线
title('三次线条插值A');
%三次线条插值B
pp1=csape(x0,y0);%默认的边界条件,即给定边界一阶导数
pp2=csape(x0,y0,'second');%给定边界二阶导数
y4=ppval(pp1,t);
Y4=ppval(pp2,t);
dy4=(ppval(pp1,0.0001)-ppval(pp1,0))/0.0001%x=0处斜率
min4=min(ppval(pp1,13:0.001:15))%13到15最小值
subplot(2,2,4);
plot(t,y4,'b',t,Y4,'r',x0,y0,'ro');%画出曲线
title('三次线条插值B');
legend('一阶','二阶');

七、二维插值

如果节点是二维的,插值函数是二元函数的话(曲面),我们可以画出三维的效果图

1、插值节点为网络节点

MatLab封装程序

z=interp2(x0,y0,z0,x,y,'method')

a、x0,y0为节点坐标,z0为n*m维矩阵,表示节点的值

b、x0,y0要求一个为行向量一个为列向量

c、z为矩阵,n=length(y),m=length(x)       因为MATLAB是列优先

d、

e、x,y为插值点坐标,z为函数值

然后如果是三次样条插值,可以使用命令

pp=csape({x0,y0},z0,conds,valconds),z=fnval(pp,{x,y})

a、x0,y0为节点坐标,z0为n*m维矩阵,表示节点的值

b、x0,y0要求一个为行向量一个为列向量

c、“conds”与一维相同,一般默认

d、x,y为插值点坐标 ,z为函数值

2、demo

clear,clc

%样本点信息
x=100:100:500;
y=100:100:400; z=[636 697 624 478 450
698 712 630 478 420
680 674 598 412 400
662 626 552 334 310]; %录入样本点信息
pp=csape({x,y},z'); %注意z矩阵的行列所对应的向量
xi=100:10:500;
yi=100:10:400;
cz1=fnval(pp,{xi,yi}); cz2=interp2(x,y,z,xi,yi','spline');
[i,j]=find(cz1==max(max(cz1))) subplot(1,2,1);
surf(xi,yi,cz1');
shading interp; %插入颜色插值
axis equal;
title('cz1'); subplot(1,2,2);
surf(xi,yi,cz2);
shading interp;
axis equal;
title('cz2');

二、插值节点为散乱节点

1、定义

MATLAB提供了一个函数

zi=griddata(x,y,z,xi,yi)

a、x,y,z为n维向量,就是数据点

b、xi,yi是给定的网格点横纵坐标(插值点),返回zi的值

2、demo

clear,clc

%样本点信息
x=[129,140,103.5,88,185.5 195 105 157.5 107.5 77 81 162 162 117.5];
y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5];
z=-[4 8 6 8 6 8 8 9 9 8 8 9 4 9]; xi=75:200;
yi=-50:150;
zi=griddata(x,y,z,xi,yi','cubic'); subplot(1,2,1);
plot(x,y,'*');
title('xy'); subplot(1,2,2);
mesh(xi,yi,zi);
shading interp;
axis equal;
title('xyz');

建模算法(八)——插值的更多相关文章

  1. A*算法 -- 八数码问题和传教士过河问题的代码实现

    前段时间人工智能的课介绍到A*算法,于是便去了解了一下,然后试着用这个算法去解决经典的八数码问题,一开始写用了挺久时间的,后来试着把算法的框架抽离出来,编写成一个通用的算法模板,这样子如果以后需要用到 ...

  2. 建模算法(一)——线性规划

    一.解决问题 主要是安排现有资源(一定),取得最好的效益的问题解决,而且约束条件都是线性的. 二.数学模型 1.一般数学模型 2.MATLAB数学模型 其中c,x都是列向量,A,Aeq是一个合适的矩阵 ...

  3. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

  4. 7, java数据结构和算法: 八皇后问题分析和实现 , 递归回溯

    什么是八皇后问题: 指的是,在一个8 * 8的棋盘中, 放置8个棋子, 保证这8个棋子相互之间, 不在同一行,同一列,同一斜线, 共有多少种摆法? 游戏连接: http://www.4399.com/ ...

  5. python 版 mldivide matlab 反除(左除)《数学建模算法与程序》Python笔记

    今天在阅读数学建模的时候看到了差分那章 其中有一个用matlab求线性的代码,这里我贴出来 这里我送上 Python代码 In [39]: import numpy as np ...: from s ...

  6. 建模算法(十)——灰色理论之关联度分析

    一.数据变换技术 为了保证建模的质量和系统分析结果的准确性,对原始的数据要进行去量纲处理. 1.定义 设有序列,则成映射为序列x到序列y的数据变换. (1) f 是初值化变换. (2) f 是均值化变 ...

  7. 建模算法(六)——神经网络模型

    (一)神经网络简介 主要是利用计算机的计算能力,对大量的样本进行拟合,最终得到一个我们想要的结果,结果通过0-1编码,这样就OK啦 (二)人工神经网络模型 一.基本单元的三个基本要素 1.一组连接(输 ...

  8. 建模算法(五)——图与网络

    (一)图与网络的基本概念 一.无向图 含有的元素为顶点,弧和权重,但是没有方向 二.有向图 含有的元素为顶点,弧和权重,弧具有方向. 三.有限图.无限图 顶点和边有限就是有限图,否则就是无限图. 四. ...

  9. 建模算法(三)——非线性规划

    一.非线性规划和线性规划不同之处 1.含有非线性的目标函数或者约束条件 2.如果最优解存在,线性规划只能存在可行域的边界上找到(一般还是在顶点处),而非线性规划的最优解可能存在于可行域的任意一点达到. ...

随机推荐

  1. eq相等 ne、neq不相等, gt大于, lt小于 gte、ge大于等于 lte、le 小于等于 not非 mod求模 等

    eq相等   ne.neq不相等,   gt大于, lt小于 gte.ge大于等于   lte.le 小于等于   not非   mod求模   is [not] div by是否能被某数整除   i ...

  2. IOS开发/iphone开发多线程

    有时候可能有很多功能要同时实现,例如每隔多长时间就会检测程序网络连接,又或者有时候需要从服务器下载一个不小的文件,如果用单线程几乎是不可想的事情,程序将会卡的无法使用,用到多线程和不用多线程,给用户的 ...

  3. 随鼠标移动的div

    <html> <head> <style type='text/css'> #d{ border:1px solid green; width:90px; heig ...

  4. java笔记--超级类Object多线程的应用+哲学家进餐算法内部类与多线程结合

    关于Object类中的线程方法: Object类是所有Java类的 父类,在该类中定义了三个与线程操作有关的方法,使得所有的Java类在创建之后就支持多线程 这三个方法是:notify(),notif ...

  5. [Effective JavaScript 笔记] 第10条:避免使用with

    with特性,提供的任何“便利”都更让其变得不可靠和低效率. with语句的用法,可以很方便地避免对对象的重复引用.上面的代码整理成下面的形式 function status(info){ var w ...

  6. Unity3D中定时器的使用

    源地址:http://unity3d.9tech.cn/news/2014/0402/40149.html 在游戏设计过程中定时器是必不可少的工具,我们知道update方法是MonoBehavior中 ...

  7. Coursera台大机器学习课程笔记14 -- Validation

    这节课是接着上节的正则化课程的,目的也是为了防止overfitting. 第一小节讲了模型的选择,前面讲了很多模型,那么如何做出正确的选择呢?我们的目标是选择最小的Eout目标函数.首先应避免视觉化选 ...

  8. 最近win7更新后出现第二次打开IDE(delphi2007)的时候提示无法打开"EditorLineEnds.ttr"这个文件

    kb2982791 - 2014年8月12日更新 - http://support.microsoft.com/kb/2982791kb2970228 - 2014年8月12日更新 - http:// ...

  9. error: library dfftpack has Fortran sources but no Fortran compiler found解决方法

    用pip install scipy 时提示 error: library dfftpack has Fortran sources but no Fortran compiler found 解决方 ...

  10. linux 使用 ionice 限制 Xen 虚拟机磁盘 IO

    作为 VPS 服务商我们需要保证每个 VPS 公平的使用 host(服务器)的资源,避免某个 VPS 因为程序死循环.挂起.滥用等因素 “拖累” 其他 VPS,如果出现这个情况如何临时限制这个 VPS ...