MapReduce --全排序
MapReduce全排序的方法1:
每个map任务对自己的输入数据进行排序,但是无法做到全局排序,需要将数据传递到reduce,然后通过reduce进行一次总的排序,但是这样做的要求是只能有一个reduce任务来完成。
并行程度不高,无法发挥分布式计算的特点。
MapReduce全排序的方法2:
针对方法1的问题,现在介绍方法2来进行改进;
使用多个partition对map的结果进行分区,且分区后的结果是有区间的,将多个分区结果拼接起来,就是一个连续的全局排序文件。

Hadoop自带的Partitioner的实现有两种,一种为HashPartitioner, 默认的分区方式,计算公式 hash(key)%reducernum,另一种为TotalOrderPartitioner, 为排序作业创建分区,分区中数据的范围需要通过分区文件来指定。
分区文件可以人为创建,如采用等距区间,如果数据分布不均匀导致作业完成时间受限于个别reduce任务完成时间的影响。
也可以通过抽样器,先对数据进行抽样,根据数据分布生成分区文件,避免数据倾斜。
这里实现一个通过随机抽样来生成分区文件,然后对数据进行全排序,根据分区文件的范围分配到不同的reducer中。
示例代码:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.InputSampler;
import org.apache.hadoop.mapreduce.lib.partition.TotalOrderPartitioner; import java.io.IOException; /**
* Created by Edward on 2016/10/4.
*/
public class TotalSort { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { //access hdfs's user
System.setProperty("HADOOP_USER_NAME","root"); Configuration conf = new Configuration();
conf.set("mapred.jar", "D:\\MyDemo\\MapReduce\\Sort\\out\\artifacts\\TotalSort\\TotalSort.jar"); FileSystem fs = FileSystem.get(conf); /*RandomSampler 参数说明
* @param freq Probability with which a key will be chosen.
* @param numSamples Total number of samples to obtain from all selected splits.
* @param maxSplitsSampled The maximum number of splits to examine.
*/
InputSampler.RandomSampler<Text, Text> sampler = new InputSampler.RandomSampler<>(0.1, 10, 10); //设置分区文件, TotalOrderPartitioner必须指定分区文件
Path partitionFile = new Path( "_partitions");
TotalOrderPartitioner.setPartitionFile(conf, partitionFile); Job job = Job.getInstance(conf);
job.setJarByClass(TotalSort.class);
job.setInputFormatClass(KeyValueTextInputFormat.class); //数据文件默认以\t分割
job.setMapperClass(Mapper.class);
job.setReducerClass(Reducer.class);
job.setNumReduceTasks(4); //设置reduce任务个数,分区文件以reduce个数为基准,拆分成n段 job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); job.setPartitionerClass(TotalOrderPartitioner.class); FileInputFormat.addInputPath(job, new Path("/test/sort")); Path path = new Path("/test/wc/output"); if(fs.exists(path))//如果目录存在,则删除目录
{
fs.delete(path,true);
}
FileOutputFormat.setOutputPath(job, path); //将随机抽样数据写入分区文件
InputSampler.writePartitionFile(job, sampler); boolean b = job.waitForCompletion(true);
if(b)
{
System.out.println("OK");
} }
}
测试数据:
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2
19 2
20 2
...
5999 4
6000 4
6001 4
6002 4
6003 4
6004 4
6005 4
6006 4
6007 4
6008 4
6009 4
6010 4
抽样生成的分区文件为:
# hadoop fs -text /user/root/_partitions
2673 (null)
4441 (null)
5546 (null)
生成的抽样文件为sequence file通过 -text打开查看
生成的排序结果文件:

文件内容:
hadoop fs -cat /test/wc/output/part-r-00000
...
hadoop fs -cat /test/wc/output/part-r-00001
...
hadoop fs -cat /test/wc/output/part-r-00002
...
554
hadoop fs -cat /test/wc/output/part-r-00003
...
99
MapReduce --全排序的更多相关文章
- Hadoop学习笔记: 全排序
在Hadoop中实现全排序有如下三种方法: 1. 只使用一个reducer 2. 自定义partitioner 3. 使用TotalOrderPartitioner 其中第一种方法显然违背了mapre ...
- hive中的全排序
写mapreduce程序时,如果reduce个数>1,想要实现全排序需要控制好map的输出 现在学了Hive,写sql大家都很熟悉,如果一个order by解决了全排序还用那么麻烦写mapred ...
- Hadoop的partitioner、全排序
按数值排序 示例:按气温字段对天气数据集排序问题:不能将气温视为Text对象并以字典顺序排序正统做法:用顺序文件存储数据,其IntWritable键代表气温,其Text值就是数据行常用简单做法:首先, ...
- Hadoop 学习笔记 (十) MapReduce实现排序 全局变量
一些疑问:1 全排序的话,最后的应该sortJob.setNumReduceTasks(1);2 如果多个reduce task都去修改 一个静态的 IntWritable ,IntWritable会 ...
- Hadoop基础-MapReduce的排序
Hadoop基础-MapReduce的排序 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce的排序分类 1>.部分排序 部分排序是对单个分区进行排序,举个 ...
- 大数据系列之分布式计算批处理引擎MapReduce实践-排序
清明刚过,该来学习点新的知识点了. 上次说到关于MapReduce对于文本中词频的统计使用WordCount.如果还有同学不熟悉的可以参考博文大数据系列之分布式计算批处理引擎MapReduce实践. ...
- [大数据相关] Hive中的全排序:order by,sort by, distribute by
写mapreduce程序时,如果reduce个数>1,想要实现全排序需要控制好map的输出,详见Hadoop简单实现全排序. 现在学了hive,写sql大家都很熟悉,如果一个order by解决 ...
- hadoop笔记之MapReduce的应用案例(利用MapReduce进行排序)
MapReduce的应用案例(利用MapReduce进行排序) MapReduce的应用案例(利用MapReduce进行排序) 思路: Reduce之后直接进行结果合并 具体样例: 程序名:Sort. ...
- hadoop排序 -- 全排序
目录 一.关于Reducer全排序 1.1. 什么叫全排序 1.2. 分区的标准是什么 二.全排序的三种方式 2.1. 一个Reducer 2.2. 自定义分区函数 2.3. 采样 一.关于Reduc ...
随机推荐
- ASP.NET 下拉列表绑定枚举类型值,不用再新建一个枚举表
public partial class Default : System.Web.UI.Page { protected void Page_Load(object sender, EventArg ...
- Dictionary 序列化与反序列化
[转:http://blog.csdn.net/woaixiaozhe/article/details/7873582] 1.说明:Dictionary对象本身不支持序列化和反序列化,需要定义一个继承 ...
- windowDialog销毁页面的问题
[结贴] windowDialog销毁页面的问题 [复制链接] Ghost丶 15 主题 91 帖子 200 积分 中级会员 积分 200 发消息 1# 电梯直达 发表于 2015-8- ...
- 【Linux】浅谈段页式内存管理
让我们来回顾一下历史,在早期的计算机中,程序是直接运行在物理内存上的.换句话说,就是程序在运行的过程中访问的都是物理地址.如果这个系统只运行一个程序,那么只要这个程序所需的内存不要超过该机器的物理内存 ...
- 修改mongodb3.0副本集用户密码遇到的坑
最近公司对项目安全方面的问题很是重视,进行了多次各种安全漏洞的扫描,于是乎就扫到了mongodb弱口令的问题. 在项目部署初期,因为大家对这个都不是特别重视,大概是因为觉得反正是内网项目吧,所以mon ...
- ADF_Controller系列5_通过绑定TasksFlow创建Train
2015-02-14 Created By BaoXinjian
- BOM与DOM
通常情况下,页面中的JavaScript代码都有一系列可以访问的对象,它们可以分为两组: 当前载入页面所拥有的对象(页面有时也可以叫做文档). 页面以外的事物所拥有的对象(即浏览器窗口和桌面屏幕). ...
- NSIS打包(一)常用概念简介
1.NSIS简介 官网:http://sourceforge.net/projects/nsis/ 维基百科: http://zh.wikipedia.org/wiki/Nullsoft%E8%85% ...
- hive基本操作
hive级联删除数据库和表 drop database t1 cascade; hive创建临时表和插入 create table t1 as select * from achi; insert i ...
- 27. Best Time to Buy and Sell Stock && Best Time to Buy and Sell Stock II && Best Time to Buy and Sell Stock III
Best Time to Buy and Sell Stock (onlineJudge: https://oj.leetcode.com/problems/best-time-to-buy-and- ...