HSIndividual.py

 import numpy as np
import ObjFunction class HSIndividual: '''
individual of harmony search algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0. def generate(self):
'''
generate a random chromsome for harmony search algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

HS.py

 import numpy as np
from HSIndividual import HSIndividual
import random
import copy
import math
import matplotlib.pyplot as plt class HarmonySearch: '''
the class for harmony search algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[HMCR, PAR]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of hs
'''
for i in xrange(0, self.sizepop):
ind = HSIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def improvise(self):
'''
improvise a new harmony
'''
ind = HSIndividual(self.vardim, self.bound)
ind.chrom = np.zeros(self.vardim)
for i in xrange(0, self.vardim):
if random.random() < self.params[0]:
if random.random() < self.params[1]:
ind.chrom[i] += self.best.chrom[i]
else:
worstIdx = np.argmin(self.fitness)
xr = 2 * self.best.chrom[i] - \
self.population[worstIdx].chrom[i]
if xr < self.bound[0, i]:
xr = self.bound[0, i]
if xr > self.bound[1, i]:
xr = self.bound[1, i]
ind.chrom[i] = self.population[worstIdx].chrom[
i] + (xr - self.population[worstIdx].chrom[i]) * random.random()
else:
ind.chrom[i] = self.bound[
0, i] + (self.bound[1, i] - self.bound[0, i]) * random.random()
ind.calculateFitness()
return ind def update(self, ind):
'''
update harmony memory
'''
minIdx = np.argmin(self.fitness)
if ind.fitness > self.population[minIdx].fitness:
self.population[minIdx] = ind
self.fitness[minIdx] = ind.fitness def solve(self):
'''
the evolution process of the hs algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while self.t < self.MAXGEN - 1:
self.t += 1
ind = self.improvise()
self.update(ind)
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
print("Optimal function value is: %f; " % self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def printResult(self):
'''
plot the result of abs algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Harmony search algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
hs = HS(60, 25, bound, 5000, [0.9950, 0.4])
hs.solve()

ObjFunction见简单遗传算法-python实现

和声搜索算法-python实现的更多相关文章

  1. 2018年中国研究生数学建模竞赛C题 二等奖 赛题论文

    2018年中国研究生数学建模竞赛C题 对恐怖袭击事件记录数据的量化分析 恐怖袭击是指极端分子或组织人为制造的.针对但不仅限于平民及民用设施的.不符合国际道义的攻击行为,它不仅具有极大的杀伤性与破坏力, ...

  2. python 递归深度优先搜索与广度优先搜索算法模拟实现

    一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件2.找出这一次和上一次关系3.假设当前 ...

  3. N数码问题的启发式搜索算法--A*算法python实现

    一.启发式搜索:A算法 1)评价函数的一般形式 : f(n) = g(n) + h(n) g(n):从S0到Sn的实际代价(搜索的横向因子) h(n):从N到目标节点的估计代价,称为启发函数(搜索的纵 ...

  4. [Python] 常见的排序与搜索算法

    说明: 本文主要使用python实现常见的排序与搜索算法:冒泡排序.选择排序.插入排序.希尔排序.快速排序.归并排序以及二分查找等. 对算法的基本思想作简要说明,只要理解了基本的思想,与实现语言无关. ...

  5. python 递归,深度优先搜索与广度优先搜索算法模拟实现

    一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件 2.找出这一次和上一次关系 3.假设 ...

  6. Python数据结构与算法之图的广度优先与深度优先搜索算法示例

    本文实例讲述了Python数据结构与算法之图的广度优先与深度优先搜索算法.分享给大家供大家参考,具体如下: 根据维基百科的伪代码实现: 广度优先BFS: 使用队列,集合 标记初始结点已被发现,放入队列 ...

  7. 【11】python 递归,深度优先搜索与广度优先搜索算法模拟实现

    一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件 2.找出这一次和上一次关系 3.假设 ...

  8. Python 图_系列之基于邻接炬阵实现广度、深度优先路径搜索算法

    图是一种抽象数据结构,本质和树结构是一样的. 图与树相比较,图具有封闭性,可以把树结构看成是图结构的前生.在树结构中,如果把兄弟节点之间或子节点之间横向连接,便构建成一个图. 树适合描述从上向下的一对 ...

  9. 禁忌搜索算法TSA 旅行商问题TSP python

    import math import random import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot ...

随机推荐

  1. 第1章 UML基础:类的关系

    1. 类的关系 1.1 继承和实现:继承表示有父子关系 1.2 依赖:(use–a),表示一个类要使用(use)另一个类. (1)类图 (2)三种依赖方式:函数参数或返回值.局部变量和静态成员变量或函 ...

  2. Mobile Prototype Dev Res Collection(Unity原型开发资源储备)

    资源储备 本文针对mobile原型开发阶段的资源收集 在做移动端的开发时,当有灵感想做些东西时,若是此时缺少美术资源和可用的脚本,此刻会有些纠结,今天在Assets Store上Mark了一些移动端开 ...

  3. Beaufort密码

    博福特密码,是一种类似于维吉尼亚密码的替代密码,由弗朗西斯·蒲福(Francis Beaufort)发明.它最知名的应用是M-209密码机.博福特密码属于对等加密,即加密演算法与解密演算法相同 博福特 ...

  4. Cursor的各种效果

    总结之后的Cursor的各种效果: http://sandbox.runjs.cn/show/bbwoyn0c http://css-cursor.techstream.org/ 源代码如下: < ...

  5. Intellij IDEA 快捷键(Mac)

    编辑 格式化代码 Alt+Command+L 大小写切换 Shift+Command+U 包围 Alt+Command+T 选中代码抽取方法 Alt+Command+M 调试/运行 查看 类关系视图 ...

  6. windows系统命令服务安装卸载

    安装: sc create PDW.CHM.WebAPI binPath= "%~dp0PDW.CHM.WebAPI.exe" start= autosc start PDW.CH ...

  7. Linux PPTP搭建

    PPPTP概述 tcp1723 1,安装 rpm -ivh ppp--14.1.rhel5.x86_64.rpm #安装ppp rpm -ivh pptpd--.rhel5.x86_64.rpm #安 ...

  8. The specified LINQ expression contains references to queries that are associated with different contexts

    今天在改写架构的时候,遇到这么个错误.当时单从字面意思,看上去错误是由join的两个不同的表来源不一致引起的. 其中的videoResult和deerpenList均来自与同一个edmx文件,所以两个 ...

  9. java方法重载 与 重写

    class ChongZai{ public void a(int a); public void a(Strting a); public void a(int a,int b); } 如上就是一个 ...

  10. js字符串截取函数slice()、substring()、substr()

    摘要 在js中字符截取函数有常用的三个slice().substring().substr()了,下面我来给大家介绍slice().substring().substr()函数在字符截取时的一些用法与 ...