Count the Trees

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1248    Accepted Submission(s): 812

Problem Description
Another common social inability is known as ACM (Abnormally Compulsive Meditation). This psychological disorder is somewhat common among programmers. It can be described as the temporary (although frequent) loss of the faculty of speech when the whole power of the brain is applied to something extremely interesting or challenging.
Juan is a very gifted programmer, and has a severe case of ACM (he even participated in an ACM world championship a few months ago). Lately, his loved ones are worried about him, because he has found a new exciting problem to exercise his intellectual powers, and he has been speechless for several weeks now. The problem is the determination of the number of different labeled binary trees that can be built using exactly n different elements.

For example, given one element A, just one binary tree can be formed (using A as the root of the tree). With two elements, A and B, four different binary trees can be created, as shown in the figure.

If you are able to provide a solution for this problem, Juan will be able to talk again, and his friends and family will be forever grateful.

Input
The input will consist of several input cases, one per line. Each input case will be specified by the number n ( 1 ≤ n ≤ 100 ) of different elements that must be used to form the trees. A number 0 will mark the end of input and is not to be processed.

Output
For each input case print the number of binary trees that can be built using the n elements, followed by a newline character.

Sample Input
1
2
10
25
0

Sample Output
1
4
60949324800
75414671852339208296275849248768000000

Source
UVA

Recommend
Eddy

If the N nodes are the same,there are h[N] different kinds of shapes.h[N] is the n-th Catalan Number.Now the N nodes are labled from 1 to N,so frac(N) should be multiplied.

#include<iostream>
using namespace std;
#ifndef HUGEINT
#define HUGEINT
#include<string>
using namespace std;
class hugeint
{
friend istream operator>> (istream&,hugeint&);
friend ostream operator<< (ostream&,hugeint&);
public:
hugeint()
{
len=0;
memset(num,0,sizeof(num));
}
hugeint(int x)
{
int p;
memset(num,0,sizeof(num));
p=x;
len=0;
while (p>0)
{
len++;
num[len]=p%10;
p/=10;
}
}
hugeint(string s)
{
int i;
len=s.size();
for (i=1;i<=len;i++)
num[i]=int(s[len-i])-48;
}
istream& operator >> (istream& is)
{
int i;
is>>s;
len=s.size();
for (i=1;i<=len;i++)
num[i]=int(s[len-i])-48;
return is;
}
ostream& operator << (ostream& os)
{
int i;
for (i=len;i>=1;i--)
cout<<num[i];
return os;
}
void clear()
{
int i;
for (i=1;i<=len;i++)
{
num[i+1]+=num[i]/10;
num[i]%=10;
}
while ((num[len]==0)&&(len>1)) len--;
}
int compare(hugeint t)
{
int i;
(*this).clear();
t.clear();
if (len>t.len) return 1;
if (len<t.len) return -1;
for (i=len;i>=1;i--)
{
if (num[i]>t.num[i]) return 1;
if (num[i]<t.num[i]) return -1;
}
return 0;
}
hugeint operator = (hugeint t)
{
int i;
len=t.len;
for (i=1;i<=len;i++)
num[i]=t.num[i];
return *this;
}
hugeint operator + (hugeint t)
{
int i;
if (t.len>len) len=t.len;
for (i=1;i<=t.len;i++) num[i]+=t.num[i];
len++;
(*this).clear();
return *this;
}
hugeint operator - (hugeint t)
{
hugeint temp;
int i;
if ((*this).compare(t)<0)
{
temp=t;
t=(*this);
}
else temp=(*this);
for (i=1;i<=temp.len;i++)
{
temp.num[i+1]--;
temp.num[i]+=(10-t.num[i]);
}
temp.clear();
return temp;
}
hugeint operator * (hugeint t)
{
hugeint temp;
int i,j;
for (i=1;i<=(*this).len;i++)
for (j=1;j<=t.len;j++)
temp.num[i+j-1]+=(*this).num[i]*t.num[j];
temp.len=(*this).len+t.len;
temp.clear();
return temp;
}
hugeint operator / (hugeint t)
{
hugeint c=0,d=0;
int i,j,p;
c.len=(*this).len; d.len=1;
for (j=(*this).len;j>=1;j--)
{
d.len++;
for (p=d.len;p>=2;p--)
d.num[p]=d.num[p-1];
d.num[1]=(*this).num[j];
while (d.compare(t)>=0)
{
c.num[j]++;
d=d-t;
}
}
c.clear();
d.clear();
return c;
}
hugeint operator % (hugeint t)
{
hugeint c,d;
int i,j,p;
for (i=1;i<=1000;i++) c.num[i]=0;
for (i=1;i<=1000;i++) d.num[i]=0;
c.len=len; d.len=1;
for (j=len;j>=1;j--)
{
d.len++;
for (p=d.len;p>=2;p--)
d.num[p]=d.num[p-1];
d.num[1]=num[j];
while (d.compare(t)>=0)
{
c.num[j]++;
d=d-t;
}
}
c.clear();
d.clear();
return d;
}
hugeint operator ++ ()
{
(*this)=(*this)+1;
return *this;
}
hugeint operator -- ()
{
(*this)=(*this)-1;
return *this;
}
hugeint operator += (hugeint t)
{
(*this)=(*this)+t;
return *this;
}
hugeint operator -= (hugeint t)
{
(*this)=(*this)-t;
return *this;
}
hugeint operator *= (hugeint t)
{
(*this)=(*this)*t;
return *this;
}
hugeint operator /= (hugeint t)
{
(*this)=(*this)/t;
return *this;
}
hugeint operator %= (hugeint t)
{
(*this)=(*this)%t;
return *this;
}
bool operator == (hugeint t)
{
int i;
if (len!=t.len) return false;
for (i=1;i<=len;i++)
if (num[i]!=t.num[i]) return false;
return true;
}
bool operator >= (hugeint t)
{
int x;
x=(*this).compare(t);
if (x>=0) return true;
return false;
}
bool operator <= (hugeint t)
{
int x;
x=(*this).compare(t);
if (x<=0) return true;
return false;
}
bool operator > (hugeint t)
{
int x;
x=(*this).compare(t);
if (x>0) return true;
return false;
}
bool operator < (hugeint t)
{
int x;
x=(*this).compare(t);
if (x<0) return true;
return false;
}
~hugeint() {}
private:
int num[1001];
int len;
string s;
};
#endif
hugeint h[125];
hugeint frac[125];
int i,N;
int main()
{
frac[0]=1;
h[0]=1;
for (i=1;i<=100;i++) frac[i]=frac[i-1]*i;
for (i=1;i<=100;i++)
{
h[i]=h[i-1]*(4*i-2);
hugeint tmp=i+1;
h[i]=h[i]/tmp;
}
while (scanf("%d",&N)!=EOF)
{
if (N==0) return 0;
hugeint ans=frac[N]*h[N];
ans<<cout;
cout<<endl;
}
return 0;
}

Count the Trees[HDU1131]的更多相关文章

  1. zjuoj 3602 Count the Trees

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3602 Count the Trees Time Limit: 2 Seco ...

  2. Uva 10007 / HDU 1131 - Count the Trees (卡特兰数)

     Count the Trees  Another common social inability is known as ACM (Abnormally Compulsive Meditation) ...

  3. TZOJ 4292 Count the Trees(树hash)

    描述 A binary tree is a tree data structure in which each node has at most two child nodes, usually di ...

  4. HDU 1131 Count the Trees 大数计算

    题目是说给出一个数字,然后以1到这个数为序号当做二叉树的结点,问总共有几种组成二叉树的方式.这个题就是用卡特兰数算出个数,然后因为有编号,不同的编号对应不同的方式,所以结果是卡特兰数乘这个数的阶乘种方 ...

  5. UVa 10007 - Count the Trees(卡特兰数+阶乘+大数)

    题目链接:UVa 10007 题意:统计n个节点的二叉树的个数 1个节点形成的二叉树的形状个数为:1 2个节点形成的二叉树的形状个数为:2 3个节点形成的二叉树的形状个数为:5 4个节点形成的二叉树的 ...

  6. uva 10007 Count the Trees

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  7. HDU 1131 Count the Trees

    卡特兰数再乘上n的阶乘 #include<iostream> #include<cstdio> using namespace std; #define base 10000 ...

  8. ZOJ3602:Count the Trees

    我是在neuqvj上交的这题:http://vj.acmclub.cn/problem/viewProblem.action?id=17848 本来是挺容易的树同构题,可是节点数比较多,愣是把普通ha ...

  9. 2012-2014 三年浙江 acm 省赛 题目 分类

    The 9th Zhejiang Provincial Collegiate Programming Contest A    Taxi Fare    25.57% (166/649)     (水 ...

随机推荐

  1. SGU-169 Numbers(找规律)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=169 解题报告: P(n)定义为n的所有位数的乘积,例如P(1243)=1*2*3* ...

  2. hiho #1288 微软2016.4校招笔试题 Font Size

    #1288 : Font Size 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Steven loves reading book on his phone. The ...

  3. android menu showAsAction属性

    app中有一个菜单(menu),showAsAction主要是针对这个菜单的显示起作用的,它有三个可选项:always:总是显示在界面上 never:不显示在界面上,只让出现在右边的三个点中 ifRo ...

  4. Ninject学习笔记<二>

    本文转载自kuangkro 如果给您带来不便请联系博主 一.控制反转和依赖注入 Ninject是一个轻量级的基于.Net平台的依赖注入(IOC)框架.所谓的IOC,即控制反转(Inversion of ...

  5. iOS和android游戏纹理优化和内存优化(cocos2d-x)(转载)

    转自http://blog.csdn.net/langresser_king/article/details/8426708 (未完成) 1.2d游戏最占内存的无疑是图片资源. 2.cocos2d-x ...

  6. iOS 中通过使用Google API获得Google服务

    最近使用了google drive这个云存储,官方指导网址为 https://developers.google.com/drive/ios/ . 官方库代码网址为 http://code.googl ...

  7. percona-xtrabackup备份mysql

    title: 1.percona-xtrabackup备份mysql date: 2016-04-10 23:19:12 tags: mysql categories: mysql --- 一.per ...

  8. .Net查看项目文件弹出未找到与约束

    项目能打开,但是当要在项目中查看文件时弹出未找到与约束contractname Microsoft.VisualStudio.Utilities.IContentTypeRegistryService ...

  9. shell定时任务

    1.认识Croncron是一个linux下的定时执行工具,可以在无需人工干预的情况下运行作业.由于Cron 是Linux的内置服务,但它不自动起来,可以用以下的方法启动.关闭这个服务:/sbin/se ...

  10. ScrollView与TableView实现选择效果

    在cocos2dx中,ScrollView与TableView都可以实现选择效果,其中ScrollView较为原始,TableView的格子大小可以不与winSize一样大. ScrollView实现 ...