5.Longest Palindromic Substring---dp
题目链接:https://leetcode.com/problems/longest-palindromic-substring/description/
题目大意:找出最长回文子字符串(连续)。
法一:暴力,三层for循环,超时。代码如下:
public String longestPalindrome(String s) {
String res = "";
//逐一检查每个子字符串
for(int i = 0; i < s.length(); i++) {
for(int j = i + 1; j < s.length(); j++) {
String tmp = s.substring(i, j + 1);
if(isPalindrome(tmp) == true) {
if(tmp.length() > res.length()) {
res = tmp;
}
}
}
}
if(res.length() == 0) {
res = String.valueOf(s.charAt(0));
}
return res;
}
//判断子字符串是否是回文
public static boolean isPalindrome(String s) {
for(int i = 0, j = s.length() - 1; i < j; i++, j--) {
if(s.charAt(i) != s.charAt(j)) {
return false;
}
}
return true;
}
法二(借鉴):dp,依次计算长度为1,2,3,。。。n的所有子字符串是否是回文,只是每次计算的时候都可以直接沿用上一次计算的结果,这样可以不用for循环判断,也就是减少了一层for循环。dp公式:dp[i, j]=ture表示初始下标为i,终点下标为j的字符串是回文字符串,dp[i, j]=true当且仅当dp[i+1, j-1]=true。代码如下(耗时71ms):
public String longestPalindrome(String s) {
int length = s.length();
boolean dp[][] = new boolean[length][length];
int start = 0, maxLength = 1;
//初始化回文长度是1-2
for(int i = 0; i < length; i++) {
dp[i][i] = true;
if(i < length - 1 && s.charAt(i) == s.charAt(i + 1)) {
dp[i][i + 1] = true;
start = i;
maxLength = 2;
}
}
//计算回文长度是3-length
for(int strLength = 3; strLength <= length; strLength++) {
//计算所有长度为strLength的字符串是否是回文串
for(int i = 0; i <= length - strLength; i++) {
int j = i + strLength - 1;//子字符串终止位置
if(dp[i + 1][j - 1] == true && s.charAt(i) == s.charAt(j)) {
dp[i][j] = true;
start = i;
maxLength = strLength;
}
}
}
return s.substring(start, start + maxLength);
}
dp数组(例子:cabba计算回文):
| 0("c") | 1("a") | 2("b") | 3("b") | 4("a") | |
| 0("c") | T(c) | F(ca) | F(cab) | F(cabb) | F(cabba) |
| 1("a") | T(a) | F(ab) | F(abb) | T(abba) | |
| 2("b") | T(b) | T(bb) | F(bba) | ||
| 3("b") | T(b) | F(ba) | |||
| 4("a") | T(a) |
dp数组填充顺序:从左下到右上,即每一个数值计算都要用到左边,下边,左下的数据。
法三(借鉴):中心扩展法(分治法),以每个字符为中心,向两边扩展找相应的字符串是否有回文。但是,要注意两种情况,一种是aba的情况,一种是abba的情况,两种的扩展中心有点区别。代码如下(耗时67ms):
public String longestPalindrome(String s) {
int length = s.length();
int start = 0, maxLength = 1;
//aba的情况,以i为中心扩展
for(int i = 0; i < length; i++) {
int left = i - 1, right = i + 1;
while(left >= 0 && right < length && s.charAt(left) == s.charAt(right)) {
if(right - left + 1 > maxLength) {
maxLength = right - left + 1;
start = left;
}
left--;
right++;
}
}
//abba的情况,以i, i+1为中心扩展
for(int i = 0; i < length; i++) {
int left = i, right = i + 1;
while(left >= 0 && right < length && s.charAt(left) == s.charAt(right)) {
if(right - left + 1 > maxLength) {
maxLength = right - left + 1;
start = left;
}
left--;
right++;
}
}
return s.substring(start, start + maxLength);
}
5.Longest Palindromic Substring---dp的更多相关文章
- *5. Longest Palindromic Substring (dp) previous blogs are helpful
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 最长回文子串(Longest Palindromic Substring)-DP问题
问题描述: 给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,而且存在唯一的最长回文子串 . 思路分析: 动态规划的思路:dp[i][j] 表示的是 从i 到 j 的字串 ...
- Leetcode:【DP】Longest Palindromic Substring 解题报告
Longest Palindromic Substring -- HARD 级别 Question SolutionGiven a string S, find the longest palindr ...
- 5.Longest Palindromic Substring (String; DP, KMP)
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 5. Longest Palindromic Substring (DP)
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- [LeetCode] Longest Palindromic Substring 最长回文串
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- Leetcode Longest Palindromic Substring
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- 【leedcode】 Longest Palindromic Substring
Given a , and there exists one unique longest palindromic substring. https://leetcode.com/problems/l ...
- 5. Longest Palindromic Substring
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
随机推荐
- [Code Festival 2017 qual A] C: Palindromic Matrix
题意 给出一个小写字母组成的字符矩阵,问能否通过重排其中的字符使得每行每列都是回文串. 分析 简化版:给出一个字符串,问能否通过重排其中的字符使得它是回文串.那么如果字符串长度为偶数,就需要a到z的个 ...
- 【明哥报错簿】可以访问jsp但是访问不到controller
此工程wms-web-enterprise启动之后,jsp页面可以访问,但是进不了controller.后来发现wms-consumer无法打包编译,在仓库m2里面发现此consumer.jar包为完 ...
- debug - vue中通过ajax获取数据时,如何避免绑定的数据中出现property of undefined错误
因为获取服务器是异步的,所以 vue 先绑定数据. 如果 ??? 是通过 ajax 异步获取的,在获取之前,???是未定义的.此时在外面的标签上添加一个 v-if="???" 可以 ...
- 51NOD 1709:复杂度分析——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1709 (我什么时候看到二进制贡献才能条件反射想到按位处理贡献呢……) 参 ...
- 服务器版“永恒之蓝”高危预警 (Samba远程命令执行漏洞CVE-2017-7494) 攻击演示
漏洞信息: 2017年5月24日Samba发布了4.6.4版本,中间修复了一个严重的远程代码执行漏洞,漏洞编号CVE-2017-7494,漏洞影响了Samba 3.5.0 之后到4.6.4/4.5.1 ...
- Python多线程、进程、协程
本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者 ...
- Update submitted Perforce changelist description by P4.net api
Firstly download the p4.net sdk from Perforce official site's download page. It's a .zip file, extra ...
- Hdu1255 覆盖的面积
覆盖的面积 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- Qt ------ QTabWidget
下图: 1.长方形的 objectName 可写可不写,不写就作用于所有 QTabWidget:椭圆形的 QTabWidget#tabWidget 要么四个都要写,要么四个都不写 2.下图的 CSS ...
- chrome 浏览器如何安装草料二维码
https://cli.im/news/6527 实测有效