题目传送门

区间

Description

在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn]。现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区间 [li,ri],都有 li≤x≤ri。
 
对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri−li,即等于它的右端点的值减去左端点的值。
 
求所有合法方案中最小的花费。如果不存在合法的方案,输出 −1。

Input

第一行包含两个正整数 n,m用空格隔开,意义如上文所述。保证 1≤m≤n
 
接下来 n行,每行表示一个区间,包含用空格隔开的两个整数 li 和 ri 为该区间的左右端点。
N<=500000,M<=200000,0≤li≤ri≤10^9

Output

只有一行,包含一个正整数,即最小花费。

Sample Input

6 3
3 5
1 2
3 4
2 2
1 5
1 4

Sample Output

2

  分析:

  一开始直接贪心+离散线段树,然后WA得天花乱坠,T飞到了九霄云外。。。还是太naive了。。。

  首先,我们能想到这样一个思路:首先对区间按照长度进行排序,这个贪心应该是显然的;然后依次将加入区间,这里加入区间是指将该区间$[l,r]$内的所有权值+1,这样就可以得到,只要有一个点的权值大于或等于$m$,那么就可以更新答案。

  维护权值不难想到用权值线段树,但是数据范围太大需要离散化(一开始还在离散卡了好久。。。太菜了。。。)。

  更新答案的时候依次将前面添加的区间减掉,直到所有点的权值都小于$m$,然后就可以找到该情况下更新的答案。这是用到尺取法的思想。

  Code:

//It is made by HolseLee on 23rd July 2018
//BZOJ 4653
#include<bits/stdc++.h>
using namespace std; const int N=5e5+;
int n,m,ans,l[N],r[N],inf=-; struct Seg{
int id,len;
bool operator < (const Seg x) const {
return len<x.len;
}
}a[N],p[N<<]; inline int Max(int x,int y)
{
return x>y?x:y;
} struct segment{
int s[N<<],sign[N<<]; void ready()
{
memset(s,,sizeof(s));
memset(sign,,sizeof(sign));
} void pushup(int rt)
{
s[rt]=Max(s[rt<<],s[rt<<|]);
} void pushdown(int rt)
{
if(!sign[rt])return;
s[rt<<]+=sign[rt];
s[rt<<|]+=sign[rt];
sign[rt<<]+=sign[rt];
sign[rt<<|]+=sign[rt];
sign[rt]=;
} void update(int l,int r,int rt,int L,int R,int C)
{
if(l>R||r<L)return;
if(L<=l&&r<=R){
s[rt]+=C;sign[rt]+=C;return;}
int mid=(l+r)>>;
pushdown(rt);
if(L<=mid)update(l,mid,rt<<,L,R,C);
if(R>mid)update(mid+,r,rt<<|,L,R,C);
pushup(rt);
}
}T; inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
} int main()
{
n=read();m=read();int x,y,z,cnt=,tot=;
for(int i=;i<=n;i++){
x=read();y=read();
a[i].len=y-x;a[i].id=i;
p[++cnt].len=x;p[cnt].id=i;
p[++cnt].len=y;p[cnt].id=i;
}
sort(p+,p+cnt+);
for(int i=;i<=cnt;i++){
x=p[i].id;tot++;
if(!l[x]) l[x]=tot;
else r[x]=tot;
}
sort(a+,a+n+);
inf=tot;T.ready();
int le=,ri=;
ans=;
while(){
while(T.s[]<m&&ri<=n){
z=a[++ri].id;x=l[z];y=r[z];
T.update(,inf,,x,y,);
}
if(T.s[]<m)break;
while(T.s[]>=m&&le<=n){
z=a[++le].id;x=l[z];y=r[z];
T.update(,inf,,x,y,-);
}
ans=min(ans,a[ri].len-a[le].len);
}
if(ans==)ans=-;
printf("%d",ans);
return ;
}

BZOJ4653 [NOI2016]区间 [线段树,离散化]的更多相关文章

  1. BZOJ4653: [Noi2016]区间(线段树 双指针)

    题意 题目链接 Sol 按照dls的说法,一般这一类的题有两种思路,一种是枚举一个点\(M\),然后check它能否成为答案.但是对于此题来说好像不好搞 另一种思路是枚举最小的区间长度是多少,这样我们 ...

  2. BZOJ4653:[NOI2016]区间(线段树)

    Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x ...

  3. 【BZOJ-4653】区间 线段树 + 排序 + 离散化

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 107  Solved: 70[Submit][Status][Di ...

  4. [NOI2016]区间 线段树

    [NOI2016]区间 LG传送门 考虑到这题的代价是最长边减最短边,可以先把边按长度排个序,双指针维护一个尺取的过程,如果存在包含某个点的区间数\(\ge m\),就更新答案并把左指针右移,这样做的 ...

  5. Luogu P1712 [NOI2016]区间(线段树)

    P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...

  6. UOJ222 NOI2016 区间 线段树+FIFO队列

    首先将区间按长度排序后离散化端点(这里的“长度”指的是离散化之前区间的实际长度) 然后模拟一个队列,区间按排好的顺序依次进入,直到某个点被覆盖了M次.之后依次出队,直到所有点都被覆盖小于M次 修改和询 ...

  7. BZOJ.4653.[NOI2016]区间(线段树)

    BZOJ4653 UOJ222 考虑二分.那么我们可以按区间长度从小到大枚举每个区间,对每个区间可以得到一个可用区间长度范围. 我们要求是否存在一个点被这些区间覆盖至少\(m\)次.这可以用线段树区间 ...

  8. 洛谷$P1712\ [NOI2016]$区间 线段树

    正解:线段树 解题报告: 传送门$QwQ$ $umm$很久以前做的了来补个题解$QwQ$ 考虑给每个区间按权值($r-l$从大往小排序,依次加入,然后考虑如果有一个位置被覆盖次数等于$m$了就可以把权 ...

  9. BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针

    BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间, ...

随机推荐

  1. java类的静态属性值获取

    获取某个类实例的静态属性: public class ErrorCode { private String code; private String message; private ErrorCod ...

  2. 解决HTML5标签兼容的办法搜集

    HTML5的语义化标签以及属性,可以让开发者非常方便地实现清晰的web页面布局,加上CSS3的效果渲染,快速建立丰富灵活的web页面显得非常简单. HTML5的新标签元素有: <header&g ...

  3. Debian sudo自动补全

    解决 debian sudo TAB 键不能自动补全命令的原因 一般情况,命令行输入 sudo apt-get ins 按 tab ,它后面会自动补全为 install 如果右面写了包的名的一部分,按 ...

  4. CF851 C 暴力

    给出n个5维下的点,求点a不与其它任意的b,c重合,向量ab,ac的夹角都为钝角,这样的点个数,并打印它们. 转换二维下的求角度的函数为五维的,而且由于要求角度大于90度,在二维情况下最多有4个点,也 ...

  5. Linux type命令的用法

    一般情况下,type命令被用于判断另外一个命令是否是内置命令,但是它实际上有更多的用法. 1.判断一个名字当前是否是alias.keyword.function.builtin.file或者什么都不是 ...

  6. k8s+docker学习连接汇总

    http://guide.daocloud.io/dcs/docker-9153982.html http://www.dczou.com/viemall/802.html https://wangl ...

  7. php跳转网络连接

    laravel用 redirect 跳转 HTTP 即可.可以把网址看作路由 例如: if($newsInfo->type == 77){ return redirect('http://192 ...

  8. nc-使用方法

    nc-远程克隆硬盘 A 接收端:  nc -lp 333 | dd of=/dev/sda          #用nc开启333监听端口  将收到的数据 写入到sda的硬盘上(前提是挂一块硬盘) B ...

  9. CSS3 object-fit 图像裁剪

    MDN定义 https://developer.mozilla.org/zh-CN/docs/Web/CSS/object-fit 该 object-fit CSS 属性指定替换元素的内容应该如何适应 ...

  10. fastJson去掉指定字段

    public static String filterFieldsJson(Object src, Class<?> clazz, String... args) { SimpleProp ...