算是记一下昨天晚上都想了些什么

官方题解   点我

简单题意

给定两个正整数$n$和$k$,定义一步操作为把当前的数字$n$等概率地变成$n$的任何一个约数,求$k$步操作后的期望数字,模$1e9 + 7$。

$$n \leq 10^{15}, k \leq 10^4$$

我的思路

设$f(n, k)$表示$n$在$k$步操作之后的期望数字,假设$n$的约数有$m$个,分别为$d_1, d_2, \dots, d_m$,有递推式

$$f(n, k) = \frac{1}{m}\sum_{i = 1}^{m}f(d_i, k - 1)$$

边界条件显然是$f(n, 0) = n$。

直接暴算的话一共有$n * k$个状态,无法承受。

接下来证明:$f(a, k) * f(b, k) = f(ab, k)$,(其中$a, b$互质)。

数学归纳法来了(逃)

1、$k = 0$的时候显然成立。

2、假设在$k - 1$的时候成立。

我们设$a$有$n$个约数,$b$有$m$个约数,因为约数个数$\sigma$是一个积性函数,所以$ab$的约数个数有$nm$个。

那么根据递推式,有

$$f(ab, k) = \frac{1}{nm}\sum_{d | ab}f(d, k - 1)$$

$$f(a, k) * f(b, k) = \frac{1}{n}\sum_{i | a}f(i, k - 1)\frac{1}{m}\sum_{j | b}f(j, k - 1) = \frac{1}{nm}\sum_{i | a}\sum_{j | b}f(i, k - 1) * f(j, k - 1)$$

要证$f(ab, k) = f(a, k) * f(b, k)$,

即证$\sum_{d | ab}f(d, k - 1) = \sum_{i | a}\sum_{j | b}f(i, k - 1) * f(j, k - 1)$,

右边的式子变形一下

$$\sum_{i | ab}\sum_{j | i \& j | a}f(j, k - 1) * f(\frac{i}{j}, k - 1)[gcd(j, \frac{i}{j} == 1)]$$

把$ab$分解质因数变成$\prod_{i = 1}^{m}p_i^{c_i}$的形式。

注意到$a$、$b$互质,那么$gcd(j, \frac{i}{j}) == 1$的时候其实只有一种,那就是$j$恰好取完了某个或某几个$p_i^{c_i}$的时候,这时候有$f(d, k - 1) = f(i, k - 1) * f(\frac{d}{i}, k - 1)[gcd(d, a) == i]$。

代进去之后发现两式相等了。

这样子的话我们就得到了$f$函数一个类似于积性的性质,于是我们可以直接把$n$分解成$\prod_{i = 1}^{m}p_i^{c_i}$的形式,然后分别计算每一个$p_i^{c_i}$的答案最后乘起来。

发现这样子状态数十分有限,只有$klogn$个,所以直接暴力算就可以了。

时间复杂度应当是$O(\sqrt{n} + klogn)$。

代码非常乱。

Code:

#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <algorithm>
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
using namespace std;
typedef long long ll;
typedef pair <ll, int> pin; const ll P = 1e9 + ; ll ans = 1LL, g[][], inv[];
bool vis[][]; map <pin, ll> mp; template <typename T>
inline void inc(T &x, T y) {
x += y;
if (x >= P) x -= P;
} inline ll fpow(ll x, ll y) {
ll res = 1LL;
for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
}
return res;
} ll f(ll p, int m, int k) {
if (p == ) return 1LL;
if (k == ) return fpow(p, m);
if (vis[m][k]) return g[m][k]; vis[m][k] = ; ll res = ;
rep(i, , m) inc(res, f(p, i, k - ) * inv[m + ] % P); return g[m][k] = res;
} inline void solve(ll p, int m, int k) {
rep(i, , m) rep(j, , k) g[i][j] = , vis[i][j] = ;
ans = ans * f(p, m, k) % P;
} int main() {
// freopen("Sample.txt", "r", stdin);
// freopen("out.txt", "w", stdout); rep(i, , ) inv[i] = fpow(i, P - ); ll n; int k;
scanf("%I64d%d", &n, &k); ll tmp = n;
for (ll i = ; i * i <= n; i++) {
if (tmp % i == ) {
int m = ;
for (; tmp % i == ; tmp /= i, ++m);
solve(i, m, k);
}
}
if (tmp > ) solve(tmp, , k); printf("%I64d\n", ans);
return ;
}

CF 1097D Makoto and a Blackboard的更多相关文章

  1. Codeforces 1097D. Makoto and a Blackboard

    传送门 首先考虑如果 $n$ 只有一个质因数的情况,即 $n=p^t$ 那么显然可以 $dp$ ,设 $f[i][j]$ 表示第 $i$ 步,当前剩下 $p^j$ 的概率 那么转移很简单: $f[i] ...

  2. CF1097D Makoto and a Blackboard

    题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...

  3. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  4. CF 1097D - Hello 2019 D题: Makoto and a Blackboard

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:传送门  Portal  原题目描述在最下面.  给一个数n ...

  5. CodeForces - 1097D:Makoto and a Blackboard (积性)

    Makoto has a big blackboard with a positive integer n written on it. He will perform the following a ...

  6. Makoto and a Blackboard CodeForces - 1097D (积性函数dp)

    大意: 初始一个数字$n$, 每次操作随机变为$n$的一个因子, 求$k$次操作后的期望值. 设$n$经过$k$次操作后期望为$f_k(n)$. 就有$f_0(n)=n$, $f_k(n)=\frac ...

  7. CF 878E Numbers on the blackboard 并查集 离线 贪心

    LINK:Numbers on the blackboard 看完题觉得很难. 想了一会发现有点水 又想了一下发现有点困难. 最终想到了 但是实现的时候 也很难. 先观察题目中的这个形式 使得前后两个 ...

  8. Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)

    题目链接:传送门 题目大意: 给出一个整数n写在黑板上,每次操作会将黑板上的数(初始值为n)等概率随机替换成它的因子. 问k次操作之后,留在黑板上的数的期望. 要求结果对109+7取模,若结果不是整数 ...

  9. codeforces#1097 D. Makoto and a Blackboard(dp+期望)

    题意:现在有一个数写在黑板上,它以等概率转化为它的一个约数,可以是1,问经过k次转化后这个数的期望值 题解:如果这个数是一个素数的n次方,那么显然可以用动态规划来求这个数的答案,否则的话,就对每个素因 ...

随机推荐

  1. Zookeeper--分布式锁和消息队列

    在java并发包中提供了若干锁的实现,它们是用于单个java虚拟机进程中的:而分布式锁能够在一组进程之间提供互斥机制,保证在任何时刻只有一个进程可以持有锁. 分布式环境中多个进程的锁则可以使用Zook ...

  2. 【转】挟天子以令诸侯博客关于TCP/IP模型与OSI模型的区别

    挟天子以令诸侯 博客园 首页 新随笔 联系 订阅 管理 随笔 - 21  文章 - 0  评论 - 9 TCP/IP四层模型与OSI参考模型   TCP/IP四层模型: 1.链路层(数据链路层/网络接 ...

  3. STL算法与树结构模板

    STL算法 STL 算法是一些模板函数,提供了相当多的有用算法和操作,从简单如for_each(遍历)到复杂如stable_sort(稳定排序),头文件是:#include <algorithm ...

  4. git clone 后使用子分支

    git clone 项目git地址 git branch -a 切换到子分支进行开发 git ckeckout 子分支名称,如:git checkout dev_feature_call git pu ...

  5. 斗地主AI

    斗地主AI设计 一.牌型         1 火箭:大小王在一起的牌型,即双王牌,此牌型最大,什么牌型都可以打.         2 炸弹:相同点数的四张牌在一起的牌型,比如四条A.除火箭外,它可以打 ...

  6. python学习 (三十一) python中的class

    1 python的类:   Python类都继承自object. __init__: 构造函数,如果不写,有一个默认的. __init__: 这个构造函数只能有一个,Python中不能有多个构造函数. ...

  7. HDU2546题解

    解题思路:先对价格排序(顺序或倒序都可以),然后,对前n-1(从1开始.排序方式为顺序)做容量为m(卡上余额)-5的01背包(背包体积和价值相等).假设dp[i][j]表示从前i个背包中挑选体积不超过 ...

  8. Linux配置IP和防火墙

    前言: 刚刚学完了怎么配置Linux IP和防火墙 前来总结. 准备: 需安装的: setup 正文: 安装基础包 yum groupinstall "Base" setup 选择 ...

  9. 怎么分辨linux系统是虚拟机还是物理机

    用lspci -b|grep "VMware"抓取系列信息,即表明此系统的宿主机是基于VMware虚拟出来的,别的可以照葫芦画瓢来!

  10. VUE 初步学习

    Vue 简单的总结一 Vue 简单的总结二 Vue 简单的总结三 Vue 简单的总结四(项目流程) Vue 简单的总结五 Vue(6)- Vue-router进阶.单页面应用(SPA)带来的问题 Vu ...