luogu 11月月赛 斐波那契数列
本来想作为水题刷,很快就想出了做法,结果细节实现太差改了好久。。。
根据题意你会发现其实就是求方程 ax+by=k解的个数。
此时 a=f[i],b=f[i+1],而(x,y)就是你要求的数对。
于是你就对斐波那契的每一项进行扩展欧几里得,然后计算个数,注意向上取整!!!
此时你把y转换为最大值应该是一个y≡n+a*t 而a可以为0,所以要加一。
#include<bits/stdc++.h>
using namespace std;
long long f[100];
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(b==0)
{
x=1;y=0;return;
}
exgcd(b,a%b,x,y);
long long tmp=x;x=y;y=tmp-a/b*y;
}
const int mod=1e9+7;
int main()
{
long long k;
scanf("%lld",&k);
f[0]=0;f[1]=1;
for(int i=2;i<=46;++i)
{
f[i]=f[i-1]+f[i-2];
}
long long ans=0;
for(int i=1;i<=45;++i)
{
long long x,y,tmp=0;
exgcd(f[i],f[i+1],x,y);
x=x*k;y=y*k;
x=(x%f[i+1]+f[i+1])%f[i+1];
if(x==0)x=f[i+1];
y=(k-f[i]*x)/f[i+1];
if(y<0)continue;
ans=(ans+(y-1)/f[i]+1)%mod;
}
printf("%lld",ans);
return 0;
}
luogu 11月月赛 斐波那契数列的更多相关文章
- 「Luogu 1349」广义斐波那契数列
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- C++扬帆远航——11(斐波那契数列)
/* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:Feibo.cpp * 作者:常轩 * 微信公众号:Worldh ...
- [Luogu P3986] 斐波那契数列 (逆元)
题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...
- hihoCoder挑战赛11 A 随机斐波那契
算了前三项.....发现是个大水题... #include<stdio.h> int main() { int n; while (~scanf("%d", &am ...
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列
2161. 围攻 (File IO): input:siege.in output:siege.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Prob ...
随机推荐
- ASP.Net中自定义Http处理及应用之HttpModule篇
HttpHandler实现了类似于ISAPI Extention的功能,他处理请求(Request)的信息和发送响应(Response).HttpHandler功能的实现通过实现IHttpHandle ...
- 【BZOJ】1143: [CTSC2008]祭祀river
[题意]求DAG上最多的点使得互不可达. [算法]floyd+最大匹配 [题解] 链是DAG上的一个点集,集合内的点相互单向可达. 反链是DAG上的一个点集,集合内的点相互不可达. 题目显然是求最长反 ...
- from 表单多文本提交不为空
假设需要提交4个文本,均不为空: <form id="form" onsubmit="return check()"> </form> ...
- 解决pl/sq可视化工具的中文乱码问题
解决pl/sql中文乱码问题 问题:pl/sql的中文都显示为“?”,怎么能显示成中文呢? 1. 执行sql语句 select * from V$NLS_PARAMETERS NLS_LANGUAG ...
- 打表找规律C - Insertion Sort Gym - 101955C
题目链接:https://cn.vjudge.net/contest/273377#problem/C 给你 n,m,k. 这个题的意思是给你n个数,在对前m项的基础上排序的情况下,问你满足递增子序列 ...
- 分享6款国内、外开源PHP轻论坛CMS程序
第一.Startbbs Startbbs,一款国产个人兴趣分享的轻论坛程序,采用PHP+MYSQL架构,目前版本是V1.1.5,之前我也 有搭建使用过功能还是比较简单的,默认风格比较让普通用户接受,这 ...
- python并发编程之multiprocessing进程(二)
python的multiprocessing模块是用来创建多进程的,下面对multiprocessing总结一下使用记录. 系列文章 python并发编程之threading线程(一) python并 ...
- ACM International Collegiate Programming Contest World Finals 2013
ACM International Collegiate Programming Contest World Finals 2013 A - Self-Assembly 题目描述:给出\(n\)个正方 ...
- 虚拟机NAT网络设置
1. 虚拟机设置 2. 本地网络设置 3. 本地虚拟网卡设置 4. 安装虚拟机,设置网络为NAT方式即可访问外网.
- Java的BIO,NIO,AIO
Java中的IO操作可谓常见.在Java的IO体系中,常有些名词容易让人困惑不解.为此,先通俗地介绍下这些名词. 1 什么是同步? 2 什么是异步? 3 什么是阻塞? 4 什么是非阻塞? 5 什么是同 ...