luogu 11月月赛 斐波那契数列
本来想作为水题刷,很快就想出了做法,结果细节实现太差改了好久。。。
根据题意你会发现其实就是求方程 ax+by=k解的个数。
此时 a=f[i],b=f[i+1],而(x,y)就是你要求的数对。
于是你就对斐波那契的每一项进行扩展欧几里得,然后计算个数,注意向上取整!!!
此时你把y转换为最大值应该是一个y≡n+a*t 而a可以为0,所以要加一。
#include<bits/stdc++.h>
using namespace std;
long long f[100];
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(b==0)
{
x=1;y=0;return;
}
exgcd(b,a%b,x,y);
long long tmp=x;x=y;y=tmp-a/b*y;
}
const int mod=1e9+7;
int main()
{
long long k;
scanf("%lld",&k);
f[0]=0;f[1]=1;
for(int i=2;i<=46;++i)
{
f[i]=f[i-1]+f[i-2];
}
long long ans=0;
for(int i=1;i<=45;++i)
{
long long x,y,tmp=0;
exgcd(f[i],f[i+1],x,y);
x=x*k;y=y*k;
x=(x%f[i+1]+f[i+1])%f[i+1];
if(x==0)x=f[i+1];
y=(k-f[i]*x)/f[i+1];
if(y<0)continue;
ans=(ans+(y-1)/f[i]+1)%mod;
}
printf("%lld",ans);
return 0;
}
luogu 11月月赛 斐波那契数列的更多相关文章
- 「Luogu 1349」广义斐波那契数列
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- C++扬帆远航——11(斐波那契数列)
/* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:Feibo.cpp * 作者:常轩 * 微信公众号:Worldh ...
- [Luogu P3986] 斐波那契数列 (逆元)
题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...
- hihoCoder挑战赛11 A 随机斐波那契
算了前三项.....发现是个大水题... #include<stdio.h> int main() { int n; while (~scanf("%d", &am ...
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列
2161. 围攻 (File IO): input:siege.in output:siege.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Prob ...
随机推荐
- 20155117王震宇 2016-2017-2 《Java程序设计》第八周学习总结
教材学习内容总结 正则表达式 正则表达式是记录文本规则的代码 元字符 ^ :^会匹配行或者字符串的起始位置,有时还会匹配整个文档的起始位置. $ :$会匹配行或字符串的结尾. \b :不会消耗任何字符 ...
- 工作中常用的Git操作--------(一)
今天主要记录一下平常工作当中使用的git操作: 1.git的安装这里省略: 2.git的操作指令: 在项目开发中,经常是拉去经理已经搭建好的一个项目,也就是给我们一个git地址.比如:http://g ...
- 某团队线下赛AWD writeup&Beescms_V4.0代码审计
还是跟上篇一样.拿别人比赛的来玩一下. 0x01 预留后门 连接方式: 0x02 后台登录口SQL注入 admin/login.php 在func.php当中找到定义的check_login函数 很 ...
- Linux 添加普通用户到 sudoers 文件
前言 Linux 的普通用户(uid >= 500)不具有某些命令的执行权限,为了执行较高权限的命令,一般有两种方法: 第一种是使用 su - 命令切换到 root 用户去执行: 另外一种方法是 ...
- MAC 文件被锁定
从windows拷贝到MAC的文件,有时候会被锁定.右键-简介-已锁定也是灰色的,无法取消: xattr -l 文件名 xattr -d com.apple.FinderInfo 文件名
- php判断是手机还是pc访问从而走不同url
<?php header("Content-type:text/html;charset=utf-8"); function is_mobile(){ $user_agent ...
- 基于AQS实现的Java并发工具类
本文主要介绍一下基于AQS实现的Java并发工具类的作用,然后简单谈一下该工具类的实现原理.其实都是AQS的相关知识,只不过在AQS上包装了一下而已.本文也是基于您在有AQS的相关知识基础上,进行讲解 ...
- mysql的两种存储引擎
MySQL 有多种存储引擎,目前常用的是 MyISAM 和 InnoDB 这两个引擎,除了这两个引擎以为还有许多其他引擎,有官方的,也有一些公司自己研发的.这篇文章主要简单概述一下常用常见的 MySQ ...
- Qt 下载列表地址
每次下载Qt总是找好长时间,收藏一下地址 Qt 下载列表地址 https://www.qt.io/download-open-source/#section-9 教育网镜像下载 http://mirr ...
- 【LOJ】 #2013. 「SCOI2016」幸运数字
题解 最大异或和,明显是个线性基 然而还有那么多路径--那就树分治,反正点数看起来很少,就是为了让人乘上一个60的常数嘛 把一个树的点分树记录下来,然后看看询问的两个点彼此相同的最后一个父亲是谁,把这 ...