luogu 11月月赛 斐波那契数列
本来想作为水题刷,很快就想出了做法,结果细节实现太差改了好久。。。
根据题意你会发现其实就是求方程 ax+by=k解的个数。
此时 a=f[i],b=f[i+1],而(x,y)就是你要求的数对。
于是你就对斐波那契的每一项进行扩展欧几里得,然后计算个数,注意向上取整!!!
此时你把y转换为最大值应该是一个y≡n+a*t 而a可以为0,所以要加一。
#include<bits/stdc++.h>
using namespace std;
long long f[100];
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(b==0)
{
x=1;y=0;return;
}
exgcd(b,a%b,x,y);
long long tmp=x;x=y;y=tmp-a/b*y;
}
const int mod=1e9+7;
int main()
{
long long k;
scanf("%lld",&k);
f[0]=0;f[1]=1;
for(int i=2;i<=46;++i)
{
f[i]=f[i-1]+f[i-2];
}
long long ans=0;
for(int i=1;i<=45;++i)
{
long long x,y,tmp=0;
exgcd(f[i],f[i+1],x,y);
x=x*k;y=y*k;
x=(x%f[i+1]+f[i+1])%f[i+1];
if(x==0)x=f[i+1];
y=(k-f[i]*x)/f[i+1];
if(y<0)continue;
ans=(ans+(y-1)/f[i]+1)%mod;
}
printf("%lld",ans);
return 0;
}
luogu 11月月赛 斐波那契数列的更多相关文章
- 「Luogu 1349」广义斐波那契数列
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- C++扬帆远航——11(斐波那契数列)
/* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:Feibo.cpp * 作者:常轩 * 微信公众号:Worldh ...
- [Luogu P3986] 斐波那契数列 (逆元)
题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...
- hihoCoder挑战赛11 A 随机斐波那契
算了前三项.....发现是个大水题... #include<stdio.h> int main() { int n; while (~scanf("%d", &am ...
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列
2161. 围攻 (File IO): input:siege.in output:siege.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Prob ...
随机推荐
- JQuery和Servlet来实现跨域请求
在网上看到很多的JQuery跨域请求的文章,比较有意思.这里我发表一个Servlet与JQuery配置实现跨域的代码,供大家参考.不足之处请指教 原理:JavaScript的Ajax不可以跨域,但是可 ...
- 【BZOJ】1834 [ZJOI2010]network 网络扩容
[算法]网络流-最大流+最小费用最大流(费用流) [题解] 第一问跑最大流. 第二问: 原始边相当于费用为0的边,再原图(跑过最大流的图)基础上添加带费用的边,容量为k(相当于inf). 第一问最大流 ...
- windows下启动mysql服务的命令行启动和手动启动方法
1.图形界面下启动mysql服务. 在图形界面下启动mysql服务的步骤如下: (1)打开控制面板->管理工具->服务,如下图所示: 可以看到Mysql服务目前的状态是未启动(未写已启动的 ...
- Android 搭建Linux系统
本文精心从网上搜罗出相关资料并整理,含有大量外部链接 安卓手机上安装linux大致分为两种方案 一.使用Linux Deploy 二.使用 Linux on Android 本文对Linux Depl ...
- python3爬虫.3.下载网页图片
目标,豆瓣读书, 下载页面书籍图片. import urllib.request import re #使用正则表达式 def getJpg(date): jpgList = re.findall(r ...
- android内存回收顺序
最近做项目的时候,经常会考虑到系统回收进程,释放资源等问题.特别查找了相关资料,了解下android内存回收顺序以及回收场景. 下面内容都为网络查找资料,若有错误,欢迎指出. 以下顺序,依次被回收的可 ...
- socket.io插件调用的demo
1.利用socket.io插件制作一个聊天框,原理是输入对话,发送到服务,服务器在返回相应的对话,最后插入页面中,时间对话的功能,这里我是使用的node.js搭建的服务器. 附上源码 <!DOC ...
- ssh使两台机器建立连接
ssh利用口令建立连接过程: 客户端--> 发送连接请求 --> 远程主机 --> 返回远程主机的公钥 --> 公钥加密客户端私钥+客户端公钥返回远程主机 --> 远程主 ...
- Windows内核读书笔记——SEH结构化异常处理
SEH是对windows系统中的异常分发和处理机制的总称,其实现分布在很多不同的模块中. SEH提供了终结处理和异常处理两种功能. 终结处理保证终结处理块中的程序一定会被执行 __try { //要保 ...
- Eclipse的SVN插件与本地SVN客户端关联不上
问题:当我们用SVN客户端把代码更新到本地,并导入到eclipse之后,却发现我们的SVN插件并没有起作用(没有代码入库.修改等小图标的显示,也没有check in,update等功能菜单).如果我们 ...