洛谷P1890 gcd区间
题目描述
给定一行n个正整数a[1]..a[n]。
m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数。
输入输出格式
输入格式:
第一行两个整数n,m。
第二行n个整数表示a[1]..a[n]。
以下m行,每行2个整数表示询问区间的左右端点。
保证输入数据合法。
输出格式:
共m行,每行表示一个询问的答案。
输入输出样例
5 3
4 12 3 6 7
1 3
2 3
5 5
1
3
7
说明
对于30%的数据,n <= 100, m <= 10
对于60%的数据,m <= 1000
对于100%的数据,1 <= n <= 1000,1 <= m <= 1,000,000
0 < 数字大小 <= 1,000,000,000
分析:如果只求一个区间,我们只需要扫一边就过了,但是要问的区间个数太多,就必须要预处理出区间的信息,f[i][j]表示[i,j]的gcd,每次添加一个元素就用当前区间的gcd和这个元素求gcd,答案用来区间并的f值,最后用O(1)输出就好了.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int n, m,a[],dp[][]; int gcd(int a, int b)
{
if (!b)
return a;
return gcd(b, a % b);
} int main()
{
scanf("%d%d", &n,&m);
for (int i = ; i <= n; i++)
{
scanf("%d", &a[i]);
dp[i][i] = a[i];
}
for (int i = ; i <= n; i++)
for (int j = i; j < n; j++)
dp[i][j + ] = gcd(dp[i][j], a[j + ]);
for (int i = ; i <= m; i++)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", dp[l][r]);
} return ;
}
洛谷P1890 gcd区间的更多相关文章
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
- 洛谷——P1890 gcd区间
P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...
- 洛谷P1890 gcd区间 [2017年6月计划 数论09]
P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...
- 洛谷1890 gcd区间
题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...
- P1890 gcd区间
P1890 gcd区间我一开始80分暴力,模拟100做法dpO(n^2+m)f[i][j]表示i到j的 gcd初始化f[i][i]=i;f[i][j]=gcd(f[i][j-1],a[j]);这样查询 ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷 1063 dp 区间dp
洛谷 1063 dp 区间dp 感觉做完这道提高组T1的题之后,受到了深深的碾压,,最近各种不在状态.. 初看这道题,不难发现它具有区间可并性,即(i, j)的最大值可以由(i, k) 与 (k+1, ...
- BZOJ5259/洛谷P4747: [Cerc2017]区间
BZOJ5259/洛谷P4747: [Cerc2017]区间 2019.8.5 [HZOI]NOIP模拟测试13 C.优美序列 思维好题,然而当成NOIP模拟题↑真的好吗... 洛谷和BZOJ都有,就 ...
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
随机推荐
- 在Windows2008下添加iscsi存储出现磁盘Offine(The disk is offine because of policy set by an adminstrator)的解决方法
打开CMD命令行输入如下命令: DISKPART.EXE DISKPART> san SAN Policy : Offline Shared DISKPART> san policy=On ...
- eos TODO EOS区块链上EOSJS和scatter开发dApp
由于我一直在深入研究EOS dApp的开发,我看了不少好文章.在这里,我汇总了下做一些研究后得到的所有知识.在本文中,我将解释如何使用EOSJS和scatter.我假设你对智能合约以及如何在EOS区块 ...
- python3【基础】-集合
集合( set):把不同的元素组成一起形成集合,是python基本的数据类型. 集合元素(set elements):组成集合的成员(不可重复) class set(object) | set() - ...
- BZOJ 1901 Zju2112 Dynamic Rankings 树状数组套线段树
题意概述:带修改求区间第k大. 分析: 我们知道不带修改的时候直接上主席树就可以了对吧?两个版本号里面的节点一起走在线段树上二分,复杂度是O((N+M)logN). 然而这里可以修改,主席树显然是凉了 ...
- 172322 2018-2019-1 《Java软件结构与数据结构》实验一报告
172322 2018-2019-1 <Java软件结构与数据结构>实验一报告 课程:<程序设计与数据结构> 班级: 1723 姓名: 张昊然 学号:20172322 实验教师 ...
- 《C》变量
变量的存储方式和生存周期
- Linux发行版本应用场景
如果你是一个Linux爱好者,想选择一个桌面系统,并且既不想用盗版,又不想花太多钱购买商业系统软件,那么可以选择Ubuntu桌面系统.如果你需要服务器端的Linux系统,想用一个比较稳定的服务器系统, ...
- FivePlus——分工理解
最终的游戏方案 游戏采用回合制,每回合双方英雄各自轮流选择移动和攻击以及大招,选择结束进行结算 英雄/小兵/塔的攻击力/大招效果参照作业要求,如果发现不均衡再进行调整 UI界面考虑使用QT或者命令行界 ...
- CSU 1808: 地铁 最短路
题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1808 1808: 地铁 Time Limit: 5 SecMemory Limit: ...
- HDU 5661 Claris and XOR 贪心
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5661 bc(中文):http://bestcoder.hdu.edu.cn/contests ...