题目描述

给定一行n个正整数a[1]..a[n]。

m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数。

输入输出格式

输入格式:

第一行两个整数n,m。

第二行n个整数表示a[1]..a[n]。

以下m行,每行2个整数表示询问区间的左右端点。

保证输入数据合法。

输出格式:

共m行,每行表示一个询问的答案。

输入输出样例

输入样例#1:

5 3
4 12 3 6 7
1 3
2 3
5 5
输出样例#1:

1
3
7

说明

对于30%的数据,n <= 100, m <= 10

对于60%的数据,m <= 1000

对于100%的数据,1 <= n <= 1000,1 <= m <= 1,000,000

                0 < 数字大小 <= 1,000,000,000
分析:如果只求一个区间,我们只需要扫一边就过了,但是要问的区间个数太多,就必须要预处理出区间的信息,f[i][j]表示[i,j]的gcd,每次添加一个元素就用当前区间的gcd和这个元素求gcd,答案用来区间并的f值,最后用O(1)输出就好了.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int n, m,a[],dp[][]; int gcd(int a, int b)
{
if (!b)
return a;
return gcd(b, a % b);
} int main()
{
scanf("%d%d", &n,&m);
for (int i = ; i <= n; i++)
{
scanf("%d", &a[i]);
dp[i][i] = a[i];
}
for (int i = ; i <= n; i++)
for (int j = i; j < n; j++)
dp[i][j + ] = gcd(dp[i][j], a[j + ]);
for (int i = ; i <= m; i++)
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", dp[l][r]);
} return ;
}
 

洛谷P1890 gcd区间的更多相关文章

  1. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  2. 洛谷——P1890 gcd区间

    P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...

  3. 洛谷P1890 gcd区间 [2017年6月计划 数论09]

    P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...

  4. 洛谷1890 gcd区间

    题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...

  5. P1890 gcd区间

    P1890 gcd区间我一开始80分暴力,模拟100做法dpO(n^2+m)f[i][j]表示i到j的 gcd初始化f[i][i]=i;f[i][j]=gcd(f[i][j-1],a[j]);这样查询 ...

  6. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  7. 洛谷 1063 dp 区间dp

    洛谷 1063 dp 区间dp 感觉做完这道提高组T1的题之后,受到了深深的碾压,,最近各种不在状态.. 初看这道题,不难发现它具有区间可并性,即(i, j)的最大值可以由(i, k) 与 (k+1, ...

  8. BZOJ5259/洛谷P4747: [Cerc2017]区间

    BZOJ5259/洛谷P4747: [Cerc2017]区间 2019.8.5 [HZOI]NOIP模拟测试13 C.优美序列 思维好题,然而当成NOIP模拟题↑真的好吗... 洛谷和BZOJ都有,就 ...

  9. 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化

    洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...

随机推荐

  1. Spark配置参数的三种方式

    1.Spark 属性Spark应用程序的运行是通过外部参数来控制的,参数的设置正确与否,好与坏会直接影响应用程序的性能,也就影响我们整个集群的性能.参数控制有以下方式:(1)直接设置在SparkCon ...

  2. centos 6.5 双网卡 上网 virtualbox nat hostonly

    虚拟机两张网卡:分别调成NAT(eth0)和host only(eht1)模式. nat的网卡不用设置,host only网卡调为(vi /etc/sysconfig/network-scripts/ ...

  3. 所见即所得:七大无需编程的DIY开发工具

    现如今,各种DIY开发工具不断的出现,使得企业和个人在短短几分钟内就能完成应用的创建和发布,大大节省了在时间和资金上的投入.此外,DIY工具的出现,也帮助广大不具备专业知识和技术的“移动开发粉”创建自 ...

  4. CSS Grid布局指南

    简介 CSS Grid布局 (又名"网格"),是一个基于二维网格布局的系统,主要目的是改变我们基于网格设计的用户接口方式.如我们所知,CSS 总是用于网页的样式设置,但它并没有起到 ...

  5. 对字符串进行base64加解密---基于python

    本文介绍Python 2.7中的base64模块,该模块提供了基于rfc3548的Base16, 32, 64编解码的接口.官方文档,参考这里. 当前接口基于rfc3548的Base16/32/64编 ...

  6. Java 学习笔记 ------第五章 对象封装

    本章学习目标: 了解封装的概念与实现 定义类.构造函数与方法 使用方法重载与不定长度自变量 了解static方法 一.Java封装概念 在面向对象程式设计方法中,封装(英语:Encapsulation ...

  7. Java微笔记(5)

    final关键字 super关键字

  8. CentOS 7 安装 MySql 8

    1-安装 CentOS 7   2-安装 NETCORE SDK      SDK 安装文档:https://dotnet.microsoft.com/download/linux-package-m ...

  9. Visual C++ 8.0对象布局

    哈哈,从M$ Visual C++ Team的Andy Rich那里又偷学到一招:VC8的隐含编译项/d1reportSingleClassLayout和/d1reportAllClassLayout ...

  10. Storm元数据交互详解

    一.Nimbus Nimbus既需要在Zookeeper中创建元数据,也需要从Zookeeper中获取元数据. 如上图箭头1所示: 1.对于路径a,Nimbus只会创建路径,不会设置数据,数据是稍后由 ...