题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1352

题目大意:

给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数。

提示:

对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个。

解题思路:

因为第一个元素+第二个元素等于N+1,所以可以列二元一次方程A*x+B*y=N+1求出其中一对解(x0,y0),并得到ra=A/gcd(A,B),rb=B/gcd(A,B),

接下来我们需要求出最小的x,根据方程,我们知道每当y-1则x-A/B(约分后为rb/ra),因为解是整数所以x每次只能减少rb,所以最小的x为x%rb。

于是得到(x1,y1)为x最小,y最大是的情况。接下来求总共有几组解,同理根据上面求最小的x的方法,y每次只能减少ra,x每次只能增加rb。

同时要满足两个条件:①A*x<=n  ②y>0所以最后答案就为1+min(y/ra,(N-A*x)/(A*rb))。

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
//ax+by=gcd(a,b),d为最后求出的gcd(a,b)
void ex_gcd(LL a,LL b,LL &x,LL &y,LL &d){
if(!b){
d=a;
x=;
y=;
return;
}
ex_gcd(b,a%b,y,x,d);
y=y-a/b*x;
} LL cal(LL a,LL b,LL n){
LL x,y,d;
n++; //n+1
ex_gcd(a,b,x,y,d);
if(n%d) //ax+by=c,gcd(a,b)|c不成立,则无解
return ;
x*=n/d;
y*=n/d;
LL rb=b/d,ra=a/d;
x=(x%rb+rb)%rb; //求出最小的x,每当y-1则x-a/b(约分后为rb/ra),因为解是整数所以x每次只能减少rb,所以最小的x为x%rb。
y=(n-a*x)/b; //最大的y
if(x==) //x不能为0
x+=rb;
if(a*x>n-) //无解
return ;
return +min(y/ra,(n--a*x)/(a*rb));//跟求最小的x时同理,但要满足:①a*x<=n-1 ②y>0
} int main(){
int t;
ios::sync_with_stdio(false);
cin>>t;
while(t--){
int n,a,b;
cin>>n>>a>>b;
cout<<cal(a,b,n)<<endl;
}
return ;
}

51Nod 1352 集合计数(扩展欧几里德)的更多相关文章

  1. 51Nod 1352 集合计数 扩展欧几里得

    基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足 ...

  2. 51 Nod 1352 集合计数

    大致题意:求ax+by=n+1的正数解的个数. 先看下面: 相信看过了通解的参数表示后已经知道怎么解了,贴代码: #include <bits/stdc++.h> #define ll l ...

  3. 51nod 1352:集合计数

    1352 集合计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2 ...

  4. 51nod 1352 扩展欧几里德

    给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...

  5. CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元

    题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...

  6. 扩展欧几里德 SGU 106

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106   题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...

  7. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  8. [BZOJ1407][NOI2002]Savage(扩展欧几里德)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...

  9. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

随机推荐

  1. 基于数组实现Java 自定义Stack栈类及应用

    栈是存放对象的一种特殊容器,在插入与删除对象时,这种结构遵循后进先出( Last-in-first-out,LIFO)的原则.java本身是有自带Stack类包,为了达到学习目的已经更好深入了解sta ...

  2. 【SYZOJ279】滑稽♂树(树套树)

    [SYZOJ279]滑稽♂树(树套树) 题面 SYZOJ CJOJ 题目描述 zzsyz实验楼里面种了一棵滑稽树,只有滑稽之力达到大乘期的oier才能看到.虽然我们看不到,但是还是知道一些信息: 这真 ...

  3. SAS8.1安装步骤(附图)

    安装前应当把系统时间更改到一九九几年. 1.在解压后的文件夹里找到 setup .exe 双击 开始安装 2.单击SAS System Setup 3.点击Next 4.选择 complete 并单击 ...

  4. 编写优质嵌入式C程序(转)

    前言:这是一年前我为公司内部写的一个文档,旨在向年轻的嵌入式软件工程师们介绍如何在裸机环境下编写优质嵌入式C程序.感觉是有一定的参考价值,所以拿出来分享,抛砖引玉. 转载请注明出处:http://bl ...

  5. for循环中的i++和++i

    直接上代码............. #include <iostream> using namespace std; int main() { int i, k,l,p; k = 0; ...

  6. STL源码分析-bitset

    http://note.youdao.com/noteshare?id=0ea12c1fffd3866c6eddb8dc208c109d

  7. iOS APNs实战分享

    序言: 因为App的功能需要,最近一直在调研苹果的APNs推送,开始时觉得超麻烦,现在感觉还是比较easy,“难者不会,会者不难”,自己踩过了这么多的坑终于会了,不出来吐槽(装X)一下对不起自己,23 ...

  8. centos pure-ftpd配置及错误解决

    使用yum安装pure-ftpd Pure-FTPd是Linux上的一个开源的FTP服务程序,在易用性.配置性上比vsftp较方便,下面我们使用centos6演示安装和配置pure-ftpd. 安装e ...

  9. 使用L2正则化和平均滑动模型的LeNet-5MNIST手写数字识别模型

    使用L2正则化和平均滑动模型的LeNet-5MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: T ...

  10. [LeetCode] 27. Remove Element ☆

    Given an array and a value, remove all instances of that value in place and return the new length. D ...