[Luogu4558] [LOJ2550]


\(19.3.25\)

JSOI2018简要题解 - FallDream

规律就是

对于\(n=m\)我们每一条左下到右上的对角线上的点的走法都是一样的且每\(n\)步一个轮重复

对于\(n!=m\)我们找到最大公约数\(d\),在每个\(d∗d\)的方格里满足左上到右下的对角线点的走法一样且\(d\)轮一个重复

然后枚举\(dx,dy=d−dx\),我们要满足\(gcd(n,dx)==1且gcd(m,dy)==1\)这时是一个合法路径

显然有一些点是必须要经过的,我们把这些点遍历一遍,同时算出\(fir[i][j]\)表示向下走\(i\)和向右走\(j\)最早第几次走到障碍

然后我们进行一下\(dp\),就是对于一个点\(i,j\),要它恰好第\(k\)轮撞到障碍物的话,我们需要到达\((i,j)\)之前的点轮数都大于\(k\),之后的点都大于等于\(k\)

然后对于每个\(fir[i][j]==k\)的点统计一下就好了

代码


\(19.3.30\)

关于这道题的找规律 : 首先对于这种循环或者矩形上的操作可以先考虑正方形 ,

发现对于\(3*3\)的正方形一定是横竖分别走1步和2步才能回到原点 ;但这太小了

对于\(5*5\)的正方形除了\(1\)步和\(4\)步还有\(2\)步和\(3\)步 , 而\(4*4\)的正方形却不能是\(2\)步和\(2\)步

猜一个结论 : 必须是互质的 , 否则不兼容; 更细心还可以发现 , 循环的步数还必须是\(n\) ; 不然有些点就会走不到或者提前撞到 , 即不会走满

猜测正方形嵌套到长方形里面会怎么样 , 发现这时每个块里的线的形状都是一样的 .

为什么会这样呢 ? 也许这时正方形的排布也要满足长和宽互质 , 否则不兼容 .

只有互质的 , 才是兼容的 , 才能跑满跑完 .

所以要找到\(d=gcd(n,m)\) , 分成\(d*d\)的正方形去做

而对于循环内的顺序却是不重要的

然后就是\(DP\)了 , \(DP\)也很巧妙

在一组合法的循环方案中 , 设\(fir[x][y]\)表示\((x,y)\)这个点在第几轮会第一次撞到 ,

然后要统计第\(k\)轮撞到\((x,y)\)的方案数 , 考虑这个就可以只用看这个循环的正方形了

可以发现一条路径如果撞上\((x,y)\) , \((x,y)\)之前的经过点都必须满足\(fir[i][j]>fir[x][y]\) , 在\((x,y)\)之后的经过点都必须满足\(fir[i][j]>=fir[x][y]\)

从左上往右下 , 从右下往左上分别做\(DP\)就好了


\(19.4.4\)

枚举自己的状态 , 考虑前面和后面要满足的条件 , 参考[LnOI2019]加特林轮盘赌

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int N=55;
const int mod=998244353;
int fir[N][N],f[N][N],g[N][N];
char s[N][N];
int n,m,P,T,ans; inline int add(int x,int y){x+=y;return x>=mod?x-mod:x;}
inline int mul(LL x,int y){x*=y;return x>=mod?x%mod:x;}
inline int gcd(int x,int y){return y?gcd(y,x%y):x;} inline int solve(){
n=read(),m=read(),P=gcd(n,m),T=n*m/P;
ans=0;
for(int i=0;i<n;i++) scanf("%s",s[i]);
for(int tx=0,ty=P;tx<=P;tx++,ty--) if(gcd(tx,n)==1&&gcd(ty,m)==1){
memset(fir,0x3f,sizeof fir);
for(int i=1,stx=0,sty=0;i<=T;i++,(stx+=tx)%=n,(sty+=ty)%=m){
for(int dx=0;dx<=tx;dx++) for(int dy=0;dy<=ty;dy++)
if(s[(stx+dx)%n][(sty+dy)%m]=='1') fir[dx][dy]=min(fir[dx][dy],i);
}
for(int t=1;t<=T;t++){
memset(f,0,sizeof f);memset(g,0,sizeof g);
f[0][0]=1,g[tx][ty]=1;
for(int i=0;i<=tx;i++)
for(int j=0;j<=ty;j++){
if(i&&fir[i-1][j]>t) f[i][j]=add(f[i][j],f[i-1][j]);
if(j&&fir[i][j-1]>t) f[i][j]=add(f[i][j],f[i][j-1]);
}
for(int i=tx;i>=0;i--)
for(int j=ty;j>=0;j--){
if(i<tx&&fir[i+1][j]>=t) g[i][j]=add(g[i][j],g[i+1][j]);
if(j<ty&&fir[i][j+1]>=t) g[i][j]=add(g[i][j],g[i][j+1]);
}
for(int i=0;i<=tx;i++){
for(int j=0;j<=ty;j++) if((i+j)>=0&&fir[i][j]==t)
ans=add(ans,mul((t-1)*P+i+j,mul(f[i][j],g[i][j])));
}
}
}
return ans;
} int main(){
for(int i=read();i;i--) printf("%d\n",solve());
}

[JSOI2018]机器人的更多相关文章

  1. [LnOI2019]加特林轮盘赌

    Luogu5249 轮流开枪打一个环上的人 , 每次\(p\)的概率打死 , \(p\)始终相同 , 从第\(1\)个人开始 , 求第\(k\)个人成为唯一幸存者的概率 \(19.3.30\) 官方题 ...

  2. DP小小结

    入门题 : [Luogu1441]砝码称重 , [NOIP2015]子串 [AHOI2009]中国象棋 , 详见代码 [HNOI2007]梦幻岛宝珠 , 详见代码 [NOIP2012]开车旅行 , 没 ...

  3. 【BZOJ5318】[JSOI2018]扫地机器人(动态规划)

    [BZOJ5318][JSOI2018]扫地机器人(动态规划) 题面 BZOJ 洛谷 题解 神仙题.不会.... 先考虑如果一个点走向了其下方的点,那么其右侧的点因为要被访问到,所以必定只能从其右上方 ...

  4. LGP4588[JSOI2018]扫地机器人

    题解 需要先说明一点东西: 1 同一副对角线方向相同,共有$gcd(n,m)$条不同的副对角线,机器人的行为是一个$gcd(n,m)$的循环:: 如果左上方是$(1,1)$,容易看出所有的路径是从左或 ...

  5. LOJ 2550 「JSOI2018」机器人——找规律+DP

    题目:https://loj.ac/problem/2550 只会写20分的搜索…… #include<cstdio> #include<cstring> #include&l ...

  6. 【LOJ】#2550. 「JSOI2018」机器人

    题解 我不会打表找规律啊QAQ 规律就是 对于\(n = m\)我们每一条左下到右上的对角线上的点的走法都是一样的且每n步一个轮重复 对于\(n != m\)我们找到最大公约数\(d\),在每个\(d ...

  7. 「JSOI2018」机器人

    在本题当中为了方便,我们将坐标范围改至 \((0 \sim n - 1, 0 \sim m - 1)\),行走即可视作任意一维在模意义下 \(+1\). 同时,注意到一个位置只能经过一次,则可以令 \ ...

  8. JSOI2018简要题解

    来自FallDream的博客,未经允许,请勿转载,谢谢. 有幸拜读到贵省的题目,题的质量还不错,而且相比zjoi可做多了,简单发一下题解吧. 还有就是,怎么markdown在博客园上的代码这么丑啊 「 ...

  9. 【翻译】用AIML实现的Python人工智能聊天机器人

    前言 用python的AIML包很容易就能写一个人工智能聊天机器人. AIML是Artificial Intelligence Markup Language的简写, 但它只是一个简单的XML. 下面 ...

随机推荐

  1. lintcode-单例

    单例 是最为最常见的设计模式之一.对于任何时刻,如果某个类只存在且最多存在一个具体的实例,那么我们称这种设计模式为单例.例如,对于 class Mouse (不是动物的mouse哦),我们应将其设计为 ...

  2. 空值和null区别

    空值代表杯子是真空的,NULL代表杯子中装满了空气

  3. 3d点云与cad模型

    https://stackoverflow.com/questions/19000096/match-3d-point-cloud-to-cad-model

  4. Redis初学笔记

    1.官网概述 Redis is an open source (BSD licensed), in-memory data structure store, used as database, cac ...

  5. win7设置开机启动virtualBOX虚拟机

    如果常用VirtualBox虚拟机系统的话,设置随开机启动也是很方便的.不需要打开VirtualBox窗口,直接启动VirtualBox虚拟机系统就可以了. 设置开机自启动VirtualBox虚拟机系 ...

  6. intellJ IDE 15 生成 serialVersionUID

    这个Inspections的位置不好找,建议搜索Serialization issues 然后勾选两项 serialzable class without "serialVersionUID ...

  7. Integer和String "+""=="方法的不同

    在上面的两个篇博客中,我们看到String和Integer不同的常量池的变现形式 我们再看一个例子: public static void main(String[] args) { // TODO ...

  8. [Lua快速了解一下]Lua的函数

    -recurrsive function fib(n) end ) + fib(n - ) end -closure 示例一 function newCounter() return function ...

  9. kafka (搜索) 在idea api操作(官方apihttp://kafka.apache.org/documentation/#producerapi)

     https://blog.csdn.net/isea533/article/details/73822881        这个不推荐,可以看一下(https://www.cnblogs.com/b ...

  10. python读取pop3服务器邮件并且下载

    # -*- coding: cp936 -*- import poplib import random import os def getmail(): # 蒋辉文拥有该程序权利 你可以随意使用 em ...