BZOJ 3437: 小P的牧场
显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价
那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$
$val[i][j]$ 表示控制站从 $i$ 一直控制到 $j+1$ 需要的代价
考虑怎么算这个东西,设 $S[i]=\sum _{j=1}^{i}B[j]$,$T[i]=\sum _{j=1}^{i}(B[j]*j)$
那么 $val[i][j]=(S[i]-S[j])*i-(T[i]-T[j])$
然后直接展开斜率优化就好了
第一次用叉积维护凸包,快了一倍
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
typedef long double ldb;
inline int read()
{
register int x=,f=; static char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e6+;
int n,A[N],B[N];
ll S[N],T[N],f[N];
inline ll X(int i) { return S[i]; }
inline ll Y(int i) { return f[i]+T[i]; }
inline ll calc(int i,int j) { return f[i]=f[j]+(S[i]-S[j])*i-(T[i]-T[j])+A[i]; }
inline ll Cross(ll xa,ll ya,ll xb,ll yb) { return xa*yb-xb*ya; }
int Q[N],l=,r=;
int main()
{
n=read();
for(int i=;i<=n;i++) A[i]=read();
for(int i=;i<=n;i++) B[i]=read(),S[i]=S[i-]+B[i];
for(int i=;i<=n;i++) T[i]=T[i-]+1ll*B[i]*i;
for(int i=;i<=n;i++)
{
while( l<r && calc(i,Q[l])>=calc(i,Q[l+]) ) l++;
int j=Q[l]; f[i]=calc(i,j);
while( l<r &&
Cross( X(Q[r])-X(Q[r-]),Y(Q[r])-Y(Q[r-]) , X(i)-X(Q[r-]),Y(i)-Y(Q[r-]) ) <= ) r--;
Q[++r]=i;
}
printf("%lld",f[n]);
return ;
}
BZOJ 3437: 小P的牧场的更多相关文章
- BZOJ 3437: 小P的牧场 斜率优化DP
3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...
- bzoj 3437: 小P的牧场 -- 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...
- BZOJ 3437 小P的牧场(斜率优化DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...
- bzoj 3437: 小P的牧场【斜率优化】
emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...
- bzoj 3437 小p的农场
bzoj 3437 小p的农场 思路 \(f[i]=min(f[j]+\sum\limits_{k=j+1}^{i}{b[k]*(i-k)}+a[i])\) \(f[i]=min(f[j]+\sum\ ...
- 3437: 小P的牧场
3437: 小P的牧场 思路 斜率优化. dp[i]表示到第i个点(第i个点按控制台)的最小代价. 代码 #include<cstdio> #include<iostream> ...
- 【BZOJ】3437: 小P的牧场
题意 n个点,需要再一些点建立控制站,如果在第\(i\)个建站,贡献为\(a[i]\).假设前一个站为\(j<i\),则\([j+1, i]\)的点的贡献是\(\sum_{k=j+1}^{i} ...
- 【BZOJ】【3437】小P的牧场
DP/斜率优化 斜率优化基本题……等等,好像就没啥变化啊= = 嗯目测这题跟仓库建设差不多?写题的时候倒是没想这么多……直接推了公式. $$f[i]=min\{f[j]+cal(j,i)+a[i]\} ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
随机推荐
- python处理Excel 之 xlrd-乾颐堂
python处理Excel常用到的模块是xlrd.使用xlrd可以非常方便的处理Excel文档,下面介绍一下基本用法 1.打开文件 import xlrd data= xlrd.open_workbo ...
- 注意for循环中变量的作用域-乾颐堂
1 2 for e in collections: pass 在for 循环里, 最后一个对象e一直存在在上下文中.就是在循环外面,接下来对e的引用仍然有效. 这里有个问题容易被忽略,如果在循 ...
- phpmailer配置qq邮箱
function send_email2($email = '*****@perspectivar.com'){ $this->autoRender = false; date_default_ ...
- C#变量初始化
在C#中声明变量使用下述语法: datatype identifier;, 例如: int i; 该语句声明int变量i.编译器不允许在表达式中使用这个变量,除非用一个值初始化了改变量.如果你不需要使 ...
- 【转载】mysql中timestamp,datetime,int类型的区别与优劣
转载来自souldak,微博:@evagle以下内容整合筛选自互联网: int1. 占用4个字节2. 建立索引之后,查询速度快3. 条件范围搜索可以使用使用between4. 不能使用mysql提供的 ...
- 洛谷 4051 [JSOI2007]字符加密(后缀数组)
题目描述 喜欢钻研问题的JS 同学,最近又迷上了对加密方法的思考.一天,他突然想出了一种他认为是终极的加密办法:把需要加密的信息排成一圈,显然,它们有很多种不同的读法. 例如‘JSOI07’,可以读作 ...
- Java中的多态方法
public class Main { public void test(Object o) { System.out.println("Object"); } public vo ...
- Docker 1.3.3/1.4.0 发布下载,Linux 容器引擎
Docker 1.3.3 发布,下载地址: https://github.com/docker/docker/archive/v1.3.3.zip 改进记录包括: Security Fix path ...
- Logiccode GSM SMS .Net Library 3.3
下载 Mega 百度 密码:5pvb
- 长按tools Icon 弹出Tips音效
快速点击,还没弹出tips,bubble音效已播放 在 Widget_ToolsTips 的 OnAwake 函数加一个延时 transform:DOScale(1, 0.1):OnComlete(f ...