BZOJ 3437: 小P的牧场
显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价
那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$
$val[i][j]$ 表示控制站从 $i$ 一直控制到 $j+1$ 需要的代价
考虑怎么算这个东西,设 $S[i]=\sum _{j=1}^{i}B[j]$,$T[i]=\sum _{j=1}^{i}(B[j]*j)$
那么 $val[i][j]=(S[i]-S[j])*i-(T[i]-T[j])$
然后直接展开斜率优化就好了
第一次用叉积维护凸包,快了一倍
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long ll;
typedef long double ldb;
inline int read()
{
register int x=,f=; static char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e6+;
int n,A[N],B[N];
ll S[N],T[N],f[N];
inline ll X(int i) { return S[i]; }
inline ll Y(int i) { return f[i]+T[i]; }
inline ll calc(int i,int j) { return f[i]=f[j]+(S[i]-S[j])*i-(T[i]-T[j])+A[i]; }
inline ll Cross(ll xa,ll ya,ll xb,ll yb) { return xa*yb-xb*ya; }
int Q[N],l=,r=;
int main()
{
n=read();
for(int i=;i<=n;i++) A[i]=read();
for(int i=;i<=n;i++) B[i]=read(),S[i]=S[i-]+B[i];
for(int i=;i<=n;i++) T[i]=T[i-]+1ll*B[i]*i;
for(int i=;i<=n;i++)
{
while( l<r && calc(i,Q[l])>=calc(i,Q[l+]) ) l++;
int j=Q[l]; f[i]=calc(i,j);
while( l<r &&
Cross( X(Q[r])-X(Q[r-]),Y(Q[r])-Y(Q[r-]) , X(i)-X(Q[r-]),Y(i)-Y(Q[r-]) ) <= ) r--;
Q[++r]=i;
}
printf("%lld",f[n]);
return ;
}
BZOJ 3437: 小P的牧场的更多相关文章
- BZOJ 3437: 小P的牧场 斜率优化DP
3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...
- bzoj 3437: 小P的牧场 -- 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...
- BZOJ 3437 小P的牧场(斜率优化DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...
- bzoj 3437: 小P的牧场【斜率优化】
emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...
- bzoj 3437 小p的农场
bzoj 3437 小p的农场 思路 \(f[i]=min(f[j]+\sum\limits_{k=j+1}^{i}{b[k]*(i-k)}+a[i])\) \(f[i]=min(f[j]+\sum\ ...
- 3437: 小P的牧场
3437: 小P的牧场 思路 斜率优化. dp[i]表示到第i个点(第i个点按控制台)的最小代价. 代码 #include<cstdio> #include<iostream> ...
- 【BZOJ】3437: 小P的牧场
题意 n个点,需要再一些点建立控制站,如果在第\(i\)个建站,贡献为\(a[i]\).假设前一个站为\(j<i\),则\([j+1, i]\)的点的贡献是\(\sum_{k=j+1}^{i} ...
- 【BZOJ】【3437】小P的牧场
DP/斜率优化 斜率优化基本题……等等,好像就没啥变化啊= = 嗯目测这题跟仓库建设差不多?写题的时候倒是没想这么多……直接推了公式. $$f[i]=min\{f[j]+cal(j,i)+a[i]\} ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
随机推荐
- code1044 导弹拦截
分析: 这套系统最多能拦截的导弹数 就是 导弹高度的最长不上升子序列(下降或相等) 如果要拦截所有导弹最少要配备多少套这种导弹拦截系统 就是 导弹高度的最长上升子序列 因此直接用dp求就可以了 a[i ...
- 修改ubuntu密码
https://www.linuxidc.com/Linux/2016-05/131256.htm
- jqgrid 单元格放超链接文本
.前台 <%-- builed by manage.aspx.cmt [ver:] at // :: --%> <%@ Page Language="C#" Au ...
- 3.1.6 循环栅栏:CyclicBarrier
package 第三章.循环栅栏CyclicBarrier; import java.util.concurrent.BrokenBarrierException;import java.util.c ...
- Redis 数据库学习
安装(mac) 使用homebrew安装,命令是:brew install redis. 安装完成后启动命令:brew services start redis. 使用命令redis-cli进入red ...
- [GO]gtk的windows环境搭建
首先需要安装一个命令行的工作,我们这里安装的是msys2,直接百度地址然后安装即可,我这里安装的是64位 安装好之后进行该软件源配置 修改mirrorlist.msys ## Primary ## m ...
- windows7配置git 免密码登录git服务器
1.在桌面右击“Git Bash Here ” 2.输入:cd ~/.ssh/ 3.输入你的git服务器的用户 git config --global user.name "xx" ...
- 【转载】mysql中timestamp,datetime,int类型的区别与优劣
转载来自souldak,微博:@evagle以下内容整合筛选自互联网: int1. 占用4个字节2. 建立索引之后,查询速度快3. 条件范围搜索可以使用使用between4. 不能使用mysql提供的 ...
- CodeForces 342B Xenia and Spies (水题模拟,贪心)
题意:给定 n 个间谍,m个区间,一个 s,一个f,然后从 s开始传纸条,然后传到 f,然后在每个 t 时间在区间内的不能传,问你最少的时间传过去. 析:这个题,就模拟一下就好,贪心策略,能传就传,找 ...
- ARM汇编中一些重要伪指令
IMPORT ,定义表示这是一个外部变量的标号,不是在本程序定义的 EXPORT ,表示本程序里面用到的变量提供给其他模块调用的. 以上两个在汇编和C语言混合编程的时候用到 ENDP 表示PRO ...