POJ3352 Road Construction 双连通分量+缩点
Description
It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.
The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.
Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.
So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.
Input
The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.
Output
One line, consisting of an integer, which gives the minimum number of roads that we need to add.
Sample Input
Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10 Sample Input 2
3 3
1 2
2 3
1 3
Sample Output
Output for Sample Input 1
2
Output for Sample Input 2
0
题意:一个连通的无向图,求至少需要添加几条边,能保证删除任意一条边,图仍然是连通的。
题解:一个连通的无向图,他的双连通分量中的任意两个点至少有两条路是连通的。也就是说要加最少的边使得图是双连通
把一个连通分支缩成一个点,只要在各个缩点点之间再加上一条边就可以了。。
不难。。注意细节
#include<stdio.h>
#include <algorithm>
#include <string.h>
#define N 1005
#define mes(x) memset(x, 0, sizeof(x));
#define ll __int64
const long long mod = 1e9+;
const int MAX = 0x7ffffff;
using namespace std;
struct ed{
int to,next;
}edge[N*];
int head[N];
int top, dfs_clock;
int fa[N], pre[N], low[N], out[N], dir[N];
void dfs(int u,int father){
low[u] = pre[u] = dfs_clock++;
for(int i = head[u];i != -;i = edge[i].next){
int v = edge[i].to;
if(v == father) continue;
if(!pre[v]){
dfs(v,u);
low[u] = min(low[u],low[v]);
}
else low[u] = min(low[u], pre[v]);
}
}
void addedge(int u,int v){
edge[top].to = v;
edge[top].next = head[u];
head[u] = top++;
}
int main()
{
int n, m ,a, b, i, j,ans;
while(~scanf("%d%d", &n, &m)){
memset(head, -, sizeof(head));
memset(pre, , sizeof(pre));
memset(out, , sizeof(out));
memset(low, , sizeof(low));
dfs_clock = ;
top = ;
for(i=;i<m;i++){
scanf("%d%d", &a, &b);
addedge(a, b);
addedge(b, a);
}
dfs(,-);
for(i=;i<=n;i++)
for(j=head[i];j!=-;j = edge[j].next)
if(low[i]!=low[edge[j].to])
out[low[i]]++;
ans = ;
for(i=;i<=n;i++)
if(out[i] == )
ans++;
printf("%d\n", (ans+)/);
}
return ;
}
/*
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10
*/
POJ3352 Road Construction 双连通分量+缩点的更多相关文章
- POJ3352 Road Construction (双连通分量)
Road Construction Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ3352 Road Construction(边双连通分量)
...
- [POJ3352]Road Construction
[POJ3352]Road Construction 试题描述 It's almost summer time, and that means that it's almost summer cons ...
- HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)
Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)
layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...
- POJ-3352 Road Construction,tarjan缩点求边双连通!
Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- POJ3352 Road Construction Tarjan+边双连通
题目链接:http://poj.org/problem?id=3352 题目要求求出无向图中最少需要多少边能够使得该图边双连通. 在图G中,如果任意两个点之间有两条边不重复的路径,称为“边双连通”,去 ...
随机推荐
- SQL Server 完美SPLIT函数
-- SQL Server Split函数 -- Author:zc_0101 -- 说明: -- 支持分割符多字节 -- 使用方法 -- Select * FROM DBO. ...
- OSPF 原理
关于OSPF的数据结构Link-State Protocol Data Structures链路状态路由器与距离矢量路由器,可以知道关于整个网络的更多信息Neighbor table:also kno ...
- Qt Creator下载和安装(详细教程)
简介 Qt是跨平台的图形开发库,目前由Digia全资子公司 Qt Company 独立运营,官方网址: http://www.qt.io/ 也可以访问Qt项目域名:http://qt-project. ...
- QML插件扩展2(基于C++的插件扩展)
上一节介绍了纯QML的插件扩展方式,这种扩展方式基本满足大部分的扩展需求,下面开始介绍比较小众的基于C++的扩展 (一)更新插件工程 1.更新MyPlugin工程下的qmldir文件,加入plugin ...
- MSSQL 字符串XML 合成列
declare @str varchar(2000) set @str='1,2,3,4,6,8,5,9,10,11,12,13,14,15,16,17,18,19,20,29,30,31,32,33 ...
- docker installation on ubuntu
Ubuntu Docker is supported on these Ubuntu operating systems: Ubuntu Xenial 16.04 (LTS) Ubuntu Trust ...
- ASP之Eval、Execute、ExecuteGlobal区别分析
Eval.Execute.ExecuteGlobal 这三个语句(函数)都是执行字符串表达式,不过它们之间又有所不同. Eval 计算一个表达式的值并返回结果. 语法:[result = ]eval( ...
- 转: Windows如何打开和使用事件查看器管理计算机
方法/步骤 1 右键单击"我的电脑"(win8中名称为"这台电脑.This Computer"),选择"管理",点击. 步骤阅读 2 出 ...
- JSTL判断list的size()大小
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%> <%@ tag ...
- UVA 10277 Boastin' Red Socks
#include <iostream> #include<cstdio> #include<cstring> using namespace std; unsign ...