POJ3352 Road Construction 双连通分量+缩点
Description
It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.
The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.
Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.
So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.
Input
The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.
Output
One line, consisting of an integer, which gives the minimum number of roads that we need to add.
Sample Input
Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10 Sample Input 2
3 3
1 2
2 3
1 3
Sample Output
Output for Sample Input 1
2
Output for Sample Input 2
0
题意:一个连通的无向图,求至少需要添加几条边,能保证删除任意一条边,图仍然是连通的。
题解:一个连通的无向图,他的双连通分量中的任意两个点至少有两条路是连通的。也就是说要加最少的边使得图是双连通
把一个连通分支缩成一个点,只要在各个缩点点之间再加上一条边就可以了。。
不难。。注意细节
#include<stdio.h>
#include <algorithm>
#include <string.h>
#define N 1005
#define mes(x) memset(x, 0, sizeof(x));
#define ll __int64
const long long mod = 1e9+;
const int MAX = 0x7ffffff;
using namespace std;
struct ed{
int to,next;
}edge[N*];
int head[N];
int top, dfs_clock;
int fa[N], pre[N], low[N], out[N], dir[N];
void dfs(int u,int father){
low[u] = pre[u] = dfs_clock++;
for(int i = head[u];i != -;i = edge[i].next){
int v = edge[i].to;
if(v == father) continue;
if(!pre[v]){
dfs(v,u);
low[u] = min(low[u],low[v]);
}
else low[u] = min(low[u], pre[v]);
}
}
void addedge(int u,int v){
edge[top].to = v;
edge[top].next = head[u];
head[u] = top++;
}
int main()
{
int n, m ,a, b, i, j,ans;
while(~scanf("%d%d", &n, &m)){
memset(head, -, sizeof(head));
memset(pre, , sizeof(pre));
memset(out, , sizeof(out));
memset(low, , sizeof(low));
dfs_clock = ;
top = ;
for(i=;i<m;i++){
scanf("%d%d", &a, &b);
addedge(a, b);
addedge(b, a);
}
dfs(,-);
for(i=;i<=n;i++)
for(j=head[i];j!=-;j = edge[j].next)
if(low[i]!=low[edge[j].to])
out[low[i]]++;
ans = ;
for(i=;i<=n;i++)
if(out[i] == )
ans++;
printf("%d\n", (ans+)/);
}
return ;
}
/*
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10
*/
POJ3352 Road Construction 双连通分量+缩点的更多相关文章
- POJ3352 Road Construction (双连通分量)
Road Construction Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ3352 Road Construction(边双连通分量)
...
- [POJ3352]Road Construction
[POJ3352]Road Construction 试题描述 It's almost summer time, and that means that it's almost summer cons ...
- HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)
Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)
layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...
- POJ-3352 Road Construction,tarjan缩点求边双连通!
Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- POJ3352 Road Construction Tarjan+边双连通
题目链接:http://poj.org/problem?id=3352 题目要求求出无向图中最少需要多少边能够使得该图边双连通. 在图G中,如果任意两个点之间有两条边不重复的路径,称为“边双连通”,去 ...
随机推荐
- js截取文件名
str = 'C:\fakepath\ll.doc'; str.substring(str.lastIndexOf("\\")+1,str.lastIndexOf(".& ...
- web开发在线调试
来源: http://www.cnblogs.com/itech/archive/2012/09/23/2698754.html 通常我们开发web时候,使用ie的developertoolgs,或c ...
- 12.04 ubuntu 更改IP
在一个局域网里面,如果是自动获取IP,就会导致IP冲突 进入要连接的热点进行设置 IPV4 Setting address netmask ...
- kill -0
http://unix.stackexchange.com/questions/169898/what-does-kill-0-do 检查有没有权限杀他
- asp:cookies的属性
Expires – 过期时间.指定cookie的生命期.具体是值是过期日期.如果想让cookie的存在期限超过当前浏览器会话时间,就必须使用这个属性.当过了到期日期时,浏览器就可以删除cookie文件 ...
- ubuntu apt-get update 连接不到指定的源
问题描述: ubuntu apt-get update 连接不到指定的源,修改了几个软件源还是连接不上,同样的软件源在别的机器上都可以正常使用,后来发现每次 sudo apt-get update操作 ...
- MSG 结构
MSG 消息结构 在 Windows 程序中,消息是由 MSG 结构体来表示的. 结构原型: typedef struct tagMSG { HWND hwnd; UINT message; ...
- 非常简单的oracle和mysql数据互传
工具是navicat,我用的是Navicat Premium 10: 这个工具可以同时连接mysql和oracle,如图: 同时连接上这两个库之后 工具->数据传输 左边是数据源,右边是导入目标 ...
- Hibernate 系列教程10-组成关系
组成关系 在一个员工模型里面需要存入 员工公司所在地址的城市,街道 员工籍贯所在的城市,街道, 此时可以抽取城市,街道变成一个模型即是组成关系 Employee public class Employ ...
- linux的学习系列 3---目录
目录也是一个文件,它的唯一功能是用来保存文件及其相关信息.所有的文件,包括普通文件.设备文件和目录文件,都会被保存到目录中. 主目录 登录后,你所在的位置就是你的主目录(或登录目录),接下来你主要是在 ...