POJ3352 Road Construction 双连通分量+缩点
Description
It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.
The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.
Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.
So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.
Input
The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.
Output
One line, consisting of an integer, which gives the minimum number of roads that we need to add.
Sample Input
Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10 Sample Input 2
3 3
1 2
2 3
1 3
Sample Output
Output for Sample Input 1
2
Output for Sample Input 2
0
题意:一个连通的无向图,求至少需要添加几条边,能保证删除任意一条边,图仍然是连通的。
题解:一个连通的无向图,他的双连通分量中的任意两个点至少有两条路是连通的。也就是说要加最少的边使得图是双连通
把一个连通分支缩成一个点,只要在各个缩点点之间再加上一条边就可以了。。
不难。。注意细节
#include<stdio.h>
#include <algorithm>
#include <string.h>
#define N 1005
#define mes(x) memset(x, 0, sizeof(x));
#define ll __int64
const long long mod = 1e9+;
const int MAX = 0x7ffffff;
using namespace std;
struct ed{
int to,next;
}edge[N*];
int head[N];
int top, dfs_clock;
int fa[N], pre[N], low[N], out[N], dir[N];
void dfs(int u,int father){
low[u] = pre[u] = dfs_clock++;
for(int i = head[u];i != -;i = edge[i].next){
int v = edge[i].to;
if(v == father) continue;
if(!pre[v]){
dfs(v,u);
low[u] = min(low[u],low[v]);
}
else low[u] = min(low[u], pre[v]);
}
}
void addedge(int u,int v){
edge[top].to = v;
edge[top].next = head[u];
head[u] = top++;
}
int main()
{
int n, m ,a, b, i, j,ans;
while(~scanf("%d%d", &n, &m)){
memset(head, -, sizeof(head));
memset(pre, , sizeof(pre));
memset(out, , sizeof(out));
memset(low, , sizeof(low));
dfs_clock = ;
top = ;
for(i=;i<m;i++){
scanf("%d%d", &a, &b);
addedge(a, b);
addedge(b, a);
}
dfs(,-);
for(i=;i<=n;i++)
for(j=head[i];j!=-;j = edge[j].next)
if(low[i]!=low[edge[j].to])
out[low[i]]++;
ans = ;
for(i=;i<=n;i++)
if(out[i] == )
ans++;
printf("%d\n", (ans+)/);
}
return ;
}
/*
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10
*/
POJ3352 Road Construction 双连通分量+缩点的更多相关文章
- POJ3352 Road Construction (双连通分量)
Road Construction Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ3352 Road Construction(边双连通分量)
...
- [POJ3352]Road Construction
[POJ3352]Road Construction 试题描述 It's almost summer time, and that means that it's almost summer cons ...
- HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)
Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)
layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...
- POJ-3352 Road Construction,tarjan缩点求边双连通!
Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- POJ3352 Road Construction Tarjan+边双连通
题目链接:http://poj.org/problem?id=3352 题目要求求出无向图中最少需要多少边能够使得该图边双连通. 在图G中,如果任意两个点之间有两条边不重复的路径,称为“边双连通”,去 ...
随机推荐
- docker log 文件 清理
1 查看docker log 文件位置 docker inspect *** 2 定时清理 runcate -s 0 /var/lib/docker/containers/*/*-json.log
- css float 布局
.clearfix:after { content: ''; display: table; clear: both; } .clearfix {; }
- Ajax交互,浏览器接收不到服务器的Json数据(跨域问题)
该问题的情景如下: 问题描述 Ajax的请求代码放在一台机器上,而服务器的java 路由程序放在另一个机子上,所以Ajax的url填写的是带"http://" 的地址,而不是相对 ...
- 两台linux利用heartbeat+drbd 完美实现双机热备
一直想做基于linux的双机热备,一直没有时间和机会.一直以为只要做双机热备的实验就必须两台机器外接一个存储.甚至一个月以前在学习keepalived的时候还在琢磨keepalvied去掉哪些条件可以 ...
- log4net发布时assembly引用错误的问题
网上的通行配置: 无论BS还是CS程序都可直接在项目的AssemblyInfo.cs文件里添加以下的语句: [assembly: log4net.Config .XmlConfigurator()] ...
- Qt::ConnectionType(信号与槽的传递方式)
Qt::AutoConnection 自动连接:(默认值)如果信号在接收者所依附的线程内发射,则等同于直接连接.如果发射信号的线程和接受者所依附的线程不同,则等同于队列连接. Qt::DirectCo ...
- ListView控件的Insert、Edit和Delete功能(第二部分)
本系列文章将通过一个简单的实例,结合我自己使用ListView的情况,展示如何用ASP.NET 3.5 ListView控件进行基本的Insert.Edit和Delete操作. 系统要求: Windo ...
- linux 查看 cpu 和内存的命令 - top
1.查看内存,cpu ,当前进程task数目, 每个进程的cpu, 内存使用率, 用top 命令: 在这个页面,按 P,下面的进程排序,以cpu使用率降序排列. 按M,按内存使用率降序排列: 按N, ...
- c++运行时类型识别(rtti)
一个简单运行时类型识别 namespace rtti_ex { /* * 类型信息基类 */ class i_type_info { public: // 判断是否是指定类型 bool is(cons ...
- 基础-JavaScript中的事件
在html中引入外部js方式: <html> <head> <script src="xxx.js"></script> </ ...