HDU4719-Oh My Holy FFF(DP线段树优化)
Oh My Holy FFF
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 606 Accepted Submission(s): 141
o o o o o o o o o o o o o o o o o o
/F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\
/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \
You, as the captain of *FFF*, want to divide them into smaller groups, but each group should still be continous in the original line. Like this:
o o o | o o o o | o o o o o o | o o o o o
/F\ /F\ /F\ | /F\ /F\ /F\ /F\ | /F\ /F\ /F\ /F\ /F\ /F\ | /F\ /F\ /F\ /F\ /F\
/ \ / \ / \ | / \ / \ / \ / \ | / \ / \ / \ / \ / \ / \ | / \ / \ / \ / \ / \
In your opinion, the number of soldiers in each group should be no more than L.
Meanwhile, you want your division be "holy". Since the soldier may have different heights, you decide that for each group except the first one, its last soldier(which is the rightmost one) should be strictly taller than the previous group's last soldier. That
is, if we set bi as the height of the last soldier in group i. Then for i >= 2, there should be bi > bi-1.
You give your division a score, which is calculated as
, b0 = 0 and 1 <= k <= M, if there are M groups in total. Note that M can equal to 1.
Given the heights of all soldiers, please tell us the best score you can get, or declare the division as impossible.
For each test case, first line has two numbers N and L (1 <= L <= N <= 105), as described above.
Then comes a single line with N numbers, from H1 to Hn, they are the height of each soldier in the line, from left to right. (1 <= Hi <= 105)
2
5 2
1 4 3 2 5
5 2
5 4 3 2 1
Case #1: 31
Case #2: No solution
的每一个人的身高都是比自己矮的? 能够进行先排序。让矮的人先选,假设身高一样就让序号在后的先选,这样就不会有冲突了(单点更新的时候)。 每次查询的时候单点更新就可以。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define REP(_,a,b) for(int _=(a); _<=(b);++_)
#define sz(s) (int)((s).size())
typedef long long ll;
const int maxn = 1e5+10;
int n,l;
ll dp[maxn];
struct Num{
ll h;
int idx;
Num(ll h = 0,int idx = 0):h(h),idx(idx){}
friend bool operator < (Num a,Num b){
if(a.h!=b.h) return a.h < b.h;
else return a.idx > b.idx;
}
};
vector<Num> vN;
struct node{
int lson,rson;
ll maxx;
int mid(){
return (lson+rson)>>1;
}
}tree[maxn*4];
void pushUp(int rt){
tree[rt].maxx = max(tree[rt<<1].maxx,tree[rt<<1|1].maxx);
} void build(int L,int R,int rt){
tree[rt].lson = L;
tree[rt].rson = R;
tree[rt].maxx = -1;
if(L==R){
return;
}
int mid = tree[rt].mid();
build(L,mid,rt<<1);
build(mid+1,R,rt<<1|1);
}
void init(){
vN.clear();
memset(dp,-1,sizeof dp);
}
void update(int pos,int l,int r,int rt,ll x){
if(l==r){
tree[rt].maxx = x;
return;
}
int mid = tree[rt].mid();
if(pos<=mid){
update(pos,l,mid,rt<<1,x);
}else{
update(pos,mid+1,r,rt<<1|1,x);
}
pushUp(rt);
}
ll query(int L,int R,int l,int r,int rt){
if(L <=l && R >= r){
return tree[rt].maxx;
}
int mid = tree[rt].mid();
ll ret;
bool flag = false;
if(L <= mid){
ret = query(L,R,l,mid,rt<<1);
flag = true;
}
if(R > mid){
if(flag){
ret = max(ret,query(L,R,mid+1,r,rt<<1|1));
}else{
ret = query(L,R,mid+1,r,rt<<1|1);
}
}
return ret;
}
void input(){
scanf("%d%d",&n,&l);
REP(_,1,n){
ll h;
scanf("%I64d",&h);
vN.push_back(Num(h,_));
}
sort(vN.begin(),vN.end());
build(0,n,1);
}
void solve(){
update(0,0,n,1,0);
REP(_,0,sz(vN)-1) {
int ni = vN[_].idx;
ll nh = vN[_].h;
ll tm = query(max(ni-l,0),ni-1,0,n,1);
if(tm>=0){
dp[ni] = tm+nh*nh;
update(ni,0,n,1,dp[ni]-nh);
}
if(ni==n) break;
}
if(dp[n]<=0){
printf("No solution\n");
}else{
printf("%I64d\n",dp[n]);
}
}
int main(){
int ncase,T=1;
cin >> ncase;
while(ncase--){
init();
input();
printf("Case #%d: ",T++);
solve();
}
return 0;
}
HDU4719-Oh My Holy FFF(DP线段树优化)的更多相关文章
- [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)
题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...
- UVA-1322 Minimizing Maximizer (DP+线段树优化)
题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...
- zoj 3349 dp + 线段树优化
题目:给出一个序列,找出一个最长的子序列,相邻的两个数的差在d以内. /* 线段树优化dp dp[i]表示前i个数的最长为多少,则dp[i]=max(dp[j]+1) abs(a[i]-a[j])&l ...
- 完美字符子串 单调队列预处理+DP线段树优化
题意:有一个长度为n的字符串,每一位只会是p或j.你需要取出一个子串S(注意不是子序列),使得该子串不管是从左往右还是从右往左取,都保证每时每刻已取出的p的个数不小于j的个数.如果你的子串是最长的,那 ...
- hdu3698 Let the light guide us dp+线段树优化
http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...
- 题解 HDU 3698 Let the light guide us Dp + 线段树优化
http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...
- 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机
这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...
- Contest20140906 ProblemA dp+线段树优化
Problem A 内存限制 256MB 时间限制 5S 程序文件名 A.pas/A.c/A.cpp 输入文件 A.in 输出文件 A.out 你有一片荒地,为了方便讨论,我们将这片荒地看成一条直线, ...
- POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)
Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4721 Accepted: 1593 D ...
随机推荐
- WebBrowser与IE的关系,如何设置WebBrowser工作在IE9模式下?
原文 WebBrowser与IE的关系,如何设置WebBrowser工作在IE9模式下? 一.问题的提出 偶然发现,Winform里的WebBrowser和IE实际安装的版本似乎并不同步,很有趣! 下 ...
- 配置nexus仓库
Nexus有许多默认仓库:Central,Releases,Snapshots,和3rd Party 1.配置central仓库 Nexus内置了Maven中央代理仓库Central.选择仓库列表中的 ...
- C++辛格尔顿
设计模式是编程的焦点.经常在面试时进行审查,Singleton模式是最简单的.最常见的.大部分的主模式.所以大部分的采访是测试考试的Singleton设计模式. 以下我们就来看看单例模式怎样实现(C+ ...
- Python前世今生
Python前世今生 Python简介 Python前世今生 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时 ...
- 使用awk和grep做简单的统计
grep 或 egrep 或awk 过滤两个或多个关键词: grep -E ‘123|abc’ filename // 找出文件(filename)中包含123或者包含abc的行 egrep ‘123 ...
- Android NDK 简单介绍、工具安装、环境配置
NDK全称:Native Development Kit. 1.NDK是一系列工具的集合. * NDK提供了一系列的工具,帮助开发人员高速开发C(或C++)的动态库,并能自己主动将so和java应用一 ...
- 【慎思堂】之JS牛腩总结
一 JS基础 1-定义 Javascript是一种脚本语言/描述语言,是一种解释性语言.用于开发交互式web网页,使得网页和用户之间实现了一种实时性的.动态的.交互性的关系,使网页包含更多活跃的元素和 ...
- XML学习经验实例总结2
DTD约束 Book.dtd: <!ELEMENT 书架 (书+)> <!ELEMENT 书 (书名,价格,介绍)> <!ELEMENT 书名 (#PCDATA)> ...
- Mahout-Pearson correlation的实现
计算公式: 并通过以下代码对Mahout in Action的结果进行了验证: 代码例如以下: ` package com.example.mahout; public class TestColl ...
- isHiden和isVisible的区别(isVisible更可靠)
之前一直对isHiden和isVisible的区别比较模糊,都是乱用的.今天因需要仔细看了一下. 1.isHiden只是返回部件的隐藏属性,并不能表示部件当前的真实状态.比如A部件有个子部件B,而A处 ...