Oh My Holy FFF

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 606    Accepted Submission(s): 141

Problem Description
N soldiers from the famous "*FFF* army" is standing in a line, from left to right.

 o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o   o
/F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\ /F\
/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \

You, as the captain of *FFF*, want to divide them into smaller groups, but each group should still be continous in the original line. Like this:

 o   o   o  |  o   o   o   o  |  o   o   o   o   o   o  |  o   o   o   o   o
/F\ /F\ /F\ | /F\ /F\ /F\ /F\ | /F\ /F\ /F\ /F\ /F\ /F\ | /F\ /F\ /F\ /F\ /F\
/ \ / \ / \ | / \ / \ / \ / \ | / \ / \ / \ / \ / \ / \ | / \ / \ / \ / \ / \

In your opinion, the number of soldiers in each group should be no more than L.

Meanwhile, you want your division be "holy". Since the soldier may have different heights, you decide that for each group except the first one, its last soldier(which is the rightmost one) should be strictly taller than the previous group's last soldier. That
is, if we set bi as the height of the last soldier in group i. Then for i >= 2, there should be bi > bi-1.

You give your division a score, which is calculated as , b0 = 0 and 1 <= k <= M, if there are M groups in total. Note that M can equal to 1.

Given the heights of all soldiers, please tell us the best score you can get, or declare the division as impossible.

 
Input
The first line has a number T (T <= 10) , indicating the number of test cases.

For each test case, first line has two numbers N and L (1 <= L <= N <= 105), as described above.

Then comes a single line with N numbers, from H1 to Hn, they are the height of each soldier in the line, from left to right. (1 <= Hi <= 105)
 
Output
For test case X, output "Case #X: " first, then output the best score.
 
Sample Input
2
5 2
1 4 3 2 5
5 2
5 4 3 2 1
 
Sample Output
Case #1: 31
Case #2: No solution
 
题意:n(n < 1e5)个人排成一行,把它切成若干堆。要求每一堆的长度不超过l(l < 1e5),而且每一堆的最右一个人的身高都要比前一堆的最右一个人的身高要高,对于每一种方案,它的分数是SUM(b[k]^2-b[k-1] )  b[k] 为第k堆最右一个人的身高 要求最高的分数。

思路:朴素的DP 是  DP[i]  = max(DP[j] - b[j]) + b[i]*b[i]  ( i-l <=  j <= i-1 )  可是这样会超时(O(n^2)) 能够发现每次求DP[i] 的时候 实际就是求 区间[i-l,i-1]  DP[j]-b[j]的最大值,因此能够利用线段树优化。此时还须要解决一个问题:就是怎样保证每次求DP[i]的时候保证区间[i-l,i-1]
的每一个人的身高都是比自己矮的?  能够进行先排序。让矮的人先选,假设身高一样就让序号在后的先选,这样就不会有冲突了(单点更新的时候)。 每次查询的时候单点更新就可以。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define REP(_,a,b) for(int _=(a); _<=(b);++_)
#define sz(s) (int)((s).size())
typedef long long ll;
const int maxn = 1e5+10;
int n,l;
ll dp[maxn];
struct Num{
ll h;
int idx;
Num(ll h = 0,int idx = 0):h(h),idx(idx){}
friend bool operator < (Num a,Num b){
if(a.h!=b.h) return a.h < b.h;
else return a.idx > b.idx;
}
};
vector<Num> vN;
struct node{
int lson,rson;
ll maxx;
int mid(){
return (lson+rson)>>1;
}
}tree[maxn*4];
void pushUp(int rt){
tree[rt].maxx = max(tree[rt<<1].maxx,tree[rt<<1|1].maxx);
} void build(int L,int R,int rt){
tree[rt].lson = L;
tree[rt].rson = R;
tree[rt].maxx = -1;
if(L==R){
return;
}
int mid = tree[rt].mid();
build(L,mid,rt<<1);
build(mid+1,R,rt<<1|1);
}
void init(){
vN.clear();
memset(dp,-1,sizeof dp);
}
void update(int pos,int l,int r,int rt,ll x){
if(l==r){
tree[rt].maxx = x;
return;
}
int mid = tree[rt].mid();
if(pos<=mid){
update(pos,l,mid,rt<<1,x);
}else{
update(pos,mid+1,r,rt<<1|1,x);
}
pushUp(rt);
}
ll query(int L,int R,int l,int r,int rt){
if(L <=l && R >= r){
return tree[rt].maxx;
}
int mid = tree[rt].mid();
ll ret;
bool flag = false;
if(L <= mid){
ret = query(L,R,l,mid,rt<<1);
flag = true;
}
if(R > mid){
if(flag){
ret = max(ret,query(L,R,mid+1,r,rt<<1|1));
}else{
ret = query(L,R,mid+1,r,rt<<1|1);
}
}
return ret;
}
void input(){
scanf("%d%d",&n,&l);
REP(_,1,n){
ll h;
scanf("%I64d",&h);
vN.push_back(Num(h,_));
}
sort(vN.begin(),vN.end());
build(0,n,1);
}
void solve(){
update(0,0,n,1,0);
REP(_,0,sz(vN)-1) {
int ni = vN[_].idx;
ll nh = vN[_].h;
ll tm = query(max(ni-l,0),ni-1,0,n,1);
if(tm>=0){
dp[ni] = tm+nh*nh;
update(ni,0,n,1,dp[ni]-nh);
}
if(ni==n) break;
}
if(dp[n]<=0){
printf("No solution\n");
}else{
printf("%I64d\n",dp[n]);
}
}
int main(){
int ncase,T=1;
cin >> ncase;
while(ncase--){
init();
input();
printf("Case #%d: ",T++);
solve();
}
return 0;
}

HDU4719-Oh My Holy FFF(DP线段树优化)的更多相关文章

  1. [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)

    题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...

  2. UVA-1322 Minimizing Maximizer (DP+线段树优化)

    题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...

  3. zoj 3349 dp + 线段树优化

    题目:给出一个序列,找出一个最长的子序列,相邻的两个数的差在d以内. /* 线段树优化dp dp[i]表示前i个数的最长为多少,则dp[i]=max(dp[j]+1) abs(a[i]-a[j])&l ...

  4. 完美字符子串 单调队列预处理+DP线段树优化

    题意:有一个长度为n的字符串,每一位只会是p或j.你需要取出一个子串S(注意不是子序列),使得该子串不管是从左往右还是从右往左取,都保证每时每刻已取出的p的个数不小于j的个数.如果你的子串是最长的,那 ...

  5. hdu3698 Let the light guide us dp+线段树优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...

  6. 题解 HDU 3698 Let the light guide us Dp + 线段树优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...

  7. 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机

    这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...

  8. Contest20140906 ProblemA dp+线段树优化

    Problem A 内存限制 256MB 时间限制 5S 程序文件名 A.pas/A.c/A.cpp 输入文件 A.in 输出文件 A.out 你有一片荒地,为了方便讨论,我们将这片荒地看成一条直线, ...

  9. POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4721   Accepted: 1593 D ...

随机推荐

  1. telerik 控件 SCRIPT5007: 无法获取未定义或 null 引用的属性“documentElement” (IE 文档模式)

    IE对盒模型的渲染在 Standards Mode和Quirks Mode是有很大差别的,在Standards Mode下对于盒模型的解释和其他的标准浏览器是一样,但在Quirks Mode模式下则有 ...

  2. jetty插件配置(开发)

     <plugins>           <!-- jetty插件 -->           <plugin>               <groupId ...

  3. hdu - 3572 - Task

    题意:有N个作业,M台机器,每个作业1天只能同1台机器运行,每台机器1天只能运行1个作业,第i个作业需要pi天完成,且只能从Si到Ei中选Pi天,问能否完成所有作业(T <= 20, N< ...

  4. Beaker 1.6.4 : Python Package Index

    Beaker 1.6.4 : Python Package Index Beaker 1.6.4 Download Beaker-1.6.4.tar.gz A Session and Caching ...

  5. Js版游戏打砖块开发过程详细

    最近对js的小游戏开发来了兴趣,前段时间由于回答度娘知道的提问写了个贪吃蛇,虽然难度不大并不复杂,感觉还挺有意思.感觉小时候玩过的什么俄罗斯方块,坦克大战什么的都可以试着用js实现下,这天来了兴致又想 ...

  6. 怎样使用 App Studio 高速定制你自己的 Universal Windows App

    今天之所以在写一篇关于 App Studio 的文章是由于,App Studio 经过了几次升级功能得到了明显提升还能够调用系统功能了.而且能够更方便的和应用商店关联公布 Universal Wind ...

  7. JS - 鼠标经过边框旋转

    *右侧为鼠标经过时效果. 下载地址:http://www.lanrentuku.com/js/tupian-1200.html

  8. dataStage 7.5.1A

    ------------------------------    DataStage Server License ------------------------------ Serial Num ...

  9. OSGi 学习之路(4) - osgi的模块化 java在模块化的局限性

    底层代码可见性控制 Java提供了private,public,protected和package private(无修饰符)这四种访问控制级别,不过这仅仅提供了底层的OO数据封装特性.包这个概念确实 ...

  10. Swift - 列表项尾部附件点击响应(感叹号,箭头等)

    列表单元格尾部可以添加各种样式的附件,如感叹号,三角箭头等.而且点击内容区域与点击附件的这两个响应事件是不同的,这样可以方便我们实现不同的功能(比如点击内容则查看详情,点击感叹号则编辑) 1 2 3 ...