HDU 3304 Interesting Yang Yui Triangle lucas定理
输入p n 求杨辉三角的第n+1行不能被p整除的数有多少个
Lucas定理:
A、B是非负整数,p是质数。AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。
则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p同余
即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p),在存在i。b[i]>a[i]时,mod值为0,所以必然整除。当对于全部i,b[i]<=a[i]时。a[i]!%p!=0,所以必然不能整除
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std; int main()
{
int p, n;
int cas = 1;
while(scanf("%d %d", &p, &n) != EOF)
{
if(p ==0 && n ==0)
break;
int sum = 1;
while(n)
{
sum *= n%p+1;
n /= p;
}
printf("Case %d: %04d\n", cas++, sum%10000);
}
}
HDU 3304 Interesting Yang Yui Triangle lucas定理的更多相关文章
- hdu 3304 Interesting Yang Yui Triangle
hdu 3304 Interesting Yang Yui Triangle 题意: 给出P,N,问第N行的斐波那契数模P不等于0的有多少个? 限制: P < 1000,N <= 10^9 ...
- Interesting Yang Yui Triangle(hdu3304)
Interesting Yang Yui Triangle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- HDU 4349 Xiao Ming's Hope lucas定理
Xiao Ming's Hope Time Limit:1000MS Memory Limit:32768KB Description Xiao Ming likes counting nu ...
- HDU 4349 Xiao Ming's Hope [Lucas定理 二进制]
这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lu ...
- HDU 3037 Saving Beans (数论,Lucas定理)
题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...
- UVALive - 3700 Interesting Yang Hui Triangle
题目大意就是求一下 杨辉三角的第N行中不能被P整除的有多少个. 直接卢卡斯定理一下就行啦. #include<bits/stdc++.h> #define ll long long usi ...
- lucas 定理学习
大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
随机推荐
- Swift - 多线程实现方式(1) - NSThread
1,Swift继续使用Object-C原有的一套线程,包括三种多线程编程技术: (1)NSThread (2)Cocoa NSOperation(NSOperation和NSOperationQueu ...
- android面试题目大全<完结部分>,android笔试题目集锦
1. 下列哪些语句关于内存回收的说明是正确的? (b ) A. 程序员必须创建一个线程来释放内存 B.内存回收程序负责释放无用内存 C.内存回收程序允许程序员直接释放内存 D.内存回收 ...
- grub配置文件grub.conf详细说明
说明:只供学习交流 default行,是指grub启动时默认菜单项.0表示第一项,如果是多系统可以修改此选项改变默认光标停留位置. timeout行,是指菜单到自动启动系统前的停留时间,单位时间为se ...
- 让XP系统支持GPT硬盘
转自 http://article.pchome.net/content-1324506-all.html 1XP系统还不过时 教你完美征服3TB硬盘回顶部 原作者:沈洁 随着高清1080p片源的普及 ...
- Linux系统管理员必备的监控工具(88款)
随着互联网行业的不断发展,各种监控工具多得不可胜数.这里列出网上最全的监控工具.让你可以拥有超过80种方式来管理你的机器.在本文中,我们主要包括以下方面: 命令行工具 网络相关内容 系统相关的监控工具 ...
- getResource(String name)用法及源码分析
Project获取资源需要一个启点,加载资源的动作是由ClassLoader来完成的.Class对象和当前线程对象可以找到当前加载资源的ClassLoader,通过ClassLoader的getRes ...
- PowerShell 在线教程 4
PowerShell 在线教程 4 认识Powershell 介绍和安装 自定义控制台 快速编辑模式和标准模式 快捷键 管道和重定向 Powershell交互式 数学运算 执行外部命令 命令集 别 ...
- [51daifan]来吧,一起书写51daifan的成长史吧-让一部分人先安全起来
对新创项目而言,是idea更重要,还是执行力更重要?在没有用户时,我们该如何冷启动?团队.人.技术.产品.推广和拜春哥,哪一个更重要?到底是什么决定了一个项目的生存或者毁灭? 来吧,一起书写51dai ...
- 一个计算器的C语言实现
今天在读<编译原理及实践>时.看到了一个简单的整数计算器的实现. 依照书上的思路,我略微进行了扩展: 1.从整数计算器扩展到小数计算器. 2.支持除法 3.支持空字符. 执行效果例如以下: ...
- “ASP.default_aspx”并不包括“DropDownList1_SelectedIndexChanged”的定义,其解决方法。
"ASP.default_aspx"并不包括"DropDownList1_SelectedIndexChanged"的定义,其解决方法. 在使用DropDown ...