Description


Problem D

The Book-shelver’s Problem


Input: standard input

Output: standard output

Time Limit: 5 seconds

Memory Limit: 32 MB

You are given a collection of books, which must be shelved in a library bookcase ordered (from top to bottom in the bookcase and from left to right in each shelf) by the books’ catalogue numbers. The bookcase has a fixed width, but you may have any height
you like. The books are placed on shelves in the bookcase in the usual upright manner (i.e., you cannot lay a book on its side). You may use as many shelves as you like, placed wherever you like up to the height of the bookcase, and you may put as many books
on each shelf as you like up to the width of the bookcase. You may assume that the shelves have negligible thickness.

Now, given an ordered (by catalogue numbers) list of the heights and widths of the books and the width of the bookcase, you are expected to determine what is the minimum height bookcase that can shelve all those books.

Input

The input file may contain multiple test cases. The first line of each test case contains an integer
N (1 £ N £ 1000) that denotes the number of books to shelve, and a floating-point number
W (0 < W £ 1000) that denotes the width of the bookcase in centimeters. Then follow
N lines where the i-th (1 £ i £ N) line contains two floating-point numbers
hi (0 < hi £ 100) and wi (0 < wi £ W) indicating the height and width (both in centimeters) of the
i-th book in the list ordered by catalogue numbers. Each floating-point number will have four digits after the decimal point.

A test case containing two zeros for N and W terminates the input.

Output

For each test case in the input print a line containing the minimum height (in centimeters, up to four digits after the decimal point) of the bookcase that can shelve all the books in the list.

 

Sample Input

5 30.0000

30.0000 20.0000

20.0000 10.0000

25.0000 10.0000

30.0000 15.0000

10.0000 5.0000

10 20.0000

10.0000 2.0000

15.0000 10.0000

20.0000 5.0000

6.0000 2.0000

10.0000 3.0000

30.0000 6.0000

5.0000 3.0000

35.0000 2.0000

32.0000 4.0000

10.0000 6.0000

0 0.0000

 

Sample Output

60.0000

65.0000

题意:n本书,有宽和高,要你依次放到书架上,能够用木板隔层,每层最多不超过m的宽度

思路:居然要求是依次放,那么每本书有放这层和不放这层的两种可能,记忆化搜索,注意要考虑全都放一层的情况

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstdlib>
using namespace std;
const int maxn = 1005;
const double inf = 0x3f3f3f3f3f3f3f3f;
double m, h[maxn], w[maxn], dp[maxn];
int n, vis[maxn]; double dfs(int cur) {
if (cur >= n+1)
return 0;
if (vis[cur])
return dp[cur];
double &ans = dp[cur];
ans = inf;
vis[cur] = 1;
double H = h[cur], W = w[cur];
for (int u = cur+1; u <= n+1; u++) {
ans = min(ans, dfs(u)+H);
W += w[u];
H = max(H, h[u]);
if (W-m > 1e-9)
break;
}
return ans;
} int main() {
while (scanf("%d%lf", &n, &m) != EOF && n) {
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= n; i++)
scanf("%lf%lf", &h[i], &w[i]);
double ans = dfs(1);
printf("%.4lf\n", ans);
}
return 0;
}

UVA - 10239 The Book-shelver&#39;s Problem的更多相关文章

  1. UVA 10026 Shoemaker&#39;s Problem

    Shoemaker's Problem Shoemaker has N jobs (orders from customers) which he must make. Shoemaker can w ...

  2. UVA - 10057 A mid-summer night&#39;s dream.

    偶数时,中位数之间的数都是能够的(包含中位数) 奇数时,一定是中位数 推导请找初中老师 #include<iostream> #include<cstdio> #include ...

  3. UVA 12436 - Rip Van Winkle&#39;s Code(线段树)

    UVA 12436 - Rip Van Winkle's Code option=com_onlinejudge&Itemid=8&page=show_problem&cate ...

  4. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

  5. UVa 10025: The ? 1 ? 2 ? ... ? n = k problem

    这道题仔细思考后就可以得到比较快捷的解法,只要求出满足n*(n+1)/2 >= |k| ,且n*(n+1)/2-k为偶数的n就可以了.注意n==0时需要特殊判断. 我的解题代码如下: #incl ...

  6. codeforces 459D - Pashmak and Parmida&#39;s problem【离散化+处理+逆序对】

    题目:codeforces 459D - Pashmak and Parmida's problem 题意:给出n个数ai.然后定义f(l, r, x) 为ak = x,且l<=k<=r, ...

  7. 湘潭大学1185 Bob&#39;s Problem

    Bob's Problem Accepted : 114   Submit : 589 Time Limit : 1000 MS   Memory Limit : 65536 KB 题目描写叙述 Bo ...

  8. Uva 12436 Rip Van Winkle&#39;s Code

    Rip Van Winkle was fed up with everything except programming. One day he found a problem whichrequir ...

  9. Codeforces Round #261 (Div. 2)459D. Pashmak and Parmida&#39;s problem(求逆序数对)

    题目链接:http://codeforces.com/contest/459/problem/D D. Pashmak and Parmida's problem time limit per tes ...

随机推荐

  1. Ubuntu配置apache

    http://blog.csdn.net/ljchlx/article/details/21978431 http://www.2cto.com/os/201110/107283.html

  2. 纯手工全删除域内最后一个EXCHANGE--How to Manually Uninstall Last Exchange 2010 Server from Organization

    http://www.itbigbang.com/how-to-manually-uninstall-last-exchange-2010-server-from-organization/ 没办法, ...

  3. Android 观察系统中短信内容的变化(内容观察者)

    //内容观察者(如果系统的短信发生了变化,比如刚获取一条短信,那么将触发onChange方法) ContentResolver contentResolver = getContentResolver ...

  4. const char*, char const*, char*const的区别

    http://www.cnblogs.com/aduck/articles/2244884.html

  5. 一个优秀的http实现框架

    package com.ming; import com.mashape.unirest.http.HttpResponse; import com.mashape.unirest.http.Unir ...

  6. XtraForm中更换皮肤

    前提: 默认皮肤的显示http://www.cnblogs.com/chucklu/p/4785572.html 1.修改XtraForm的LookAndFeel的SkinName属性,设置为Cara ...

  7. Linux修改文件时候出现崩溃,产生了一个.swap交换文件,如何修复?

    有时候在用vim打开文件时提示类似以下的信息: E325: 注意 发现交换文件 ".exportcert.cpp.swp" 所有者: liuchuanliang    日期: Th ...

  8. statspack系列8

    原文:http://jonathanlewis.wordpress.com/2006/12/27/analysing-statspack-8/ 作者:Jonathan Lewis 在前面的关于stat ...

  9. POJ_3045_Cow_Acrobats_(贪心)

    描述 http://poj.org/problem?id=3045 n头牛,每头牛都有重量w[i]和力量s[i].把这n头牛落起来,每头牛会有一个危险值,危险值是它上面所有牛的重量和减去它的力量.求危 ...

  10. 【Android 复习】:从Activity中返回数据

    在实际的应用中,我们不仅仅要向Activity传递数据,而且要从Activity中返回数据,虽然返回数据和传递类似,也可以采用上一讲中的四种方式来传递数据,但是一般建议采用Intent对象的方式的来返 ...