HDU-4089 Activation
http://acm.hdu.edu.cn/showproblem.php?pid=4089
Activation
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1500 Accepted Submission(s):
570
finally comes out. Tomato is a crazy fan, and luckily he got the first release.
Now he is at home, ready to begin his journey.
But before starting the game,
he must first activate the product on the official site. There are too many
passionate fans that the activation server cannot deal with all the requests at
the same time, so all the players must wait in queue. Each time, the server
deals with the request of the first player in the queue, and the result may be
one of the following, each has a probability:
1. Activation failed: This
happens with the probability of p1. The queue remains unchanged and the server
will try to deal with the same request the next time.
2. Connection failed:
This happens with the probability of p2. Something just happened and the first
player in queue lost his connection with the server. The server will then remove
his request from the queue. After that, the player will immediately connect to
the server again and starts queuing at the tail of the queue.
3. Activation
succeeded: This happens with the probability of p3. Congratulations, the player
will leave the queue and enjoy the game himself.
4. Service unavailable: This
happens with the probability of p4. Something just happened and the server is
down. The website must shutdown the server at once. All the requests that are
still in the queue will never be dealt.
Tomato thinks it sucks if the server
is down while he is still waiting in the queue and there are no more than K-1
guys before him. And he wants to know the probability that this ugly thing
happens.
To make it clear, we say three things may happen to Tomato: he
succeeded activating the game; the server is down while he is in the queue and
there are no more than K-1 guys before him; the server is down while he is in
the queue and there are at least K guys before him.
Now you are to calculate
the probability of the second thing.
line, contains three integers and four real numbers: N, M (1 <= M <= N
<= 2000), K (K >= 1), p1, p2, p3, p4 (0 <= p1, p2, p3, p4 <= 1, p1 +
p2 + p3 + p4 = 1), indicating there are N guys in the queue (the positions are
numbered from 1 to N), and at the beginning Tomato is at the Mth position, with
the probability p1, p2, p3, p4 mentioned above.
probability that the ugly thing happens.
The answer should be rounded to 5
digits after the decimal point.
有n人都是仙剑5的fans,现在要在官网上激活游戏,n个人排成一个队列(其中主角Tomato最初排名为m),
对于队列中的第一个人,在激活的时候有以下五种情况:
1.激活失败:留在队列中继续等待下一次激活(概率p1)
2.失去连接:激活失败,并且出队列然后排到队列的尾部(概率p2)
3.激活成功:出队列(概率p3)
4.服务器瘫:服务器停止服务了,所有人都无法激活了(概率p4)
求服务器瘫痪并且此时Tomato的排名<=k的概率。
题解:
是一个概率题,分析一下题意后发现和“dp求期望”的题目有点像,因为其中都有一种死循环的可能,
该题中,如果总是发生p1概率的情况那就是死循环了。然后想到一个二维dp:
dp[i][j]表示队列中有i个人,Tomato排在第j个,能发生所求事件的概率。
显然,dp[n][m]即为所求。
j == 1 : dp[i][1] = p1*dp[i][1] + p2*dp[i][i] + p4;
2<=j<=k: dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1] + p4;
j > k : dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1];
化简:
j == 1 : dp[i][1] = p*dp[i][i] + p41;
2<=j<=k: dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1] + p41;
j > k : dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1];
其中:
p = p2 / (1 - p1);
p31 = p3 / (1 - p1);
p41 = p4 / (1 - p1);
现在可以循环 i = 1 -> n 递推求解dp[i],所以在求dp[i]时,dp[i-1]就相当于常数了,
设dp[i][j]的常数项为c[j]:
j == 1 : dp[i][1] = p*dp[i][i] + c[1];
2<=j<=k: dp[i][j] = p*dp[i][j-1] + c[j];
j > k : dp[i][j] = p*dp[i][j-1] + c[j];
在求dp[i]时,就相当于求“i元1次方程组”:
dp[i][1] = p*dp[i][i] + c[1];
dp[i][2] = p*dp[i][1] + c[2];
dp[i][3] = p*dp[i][2] + c[3];
...
dp[i][i] = p*dp[i][i-1] + c[i];
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const double eps=1e-;
double dp[][];
double pp[],c[];
int main()
{
int n,m,k,i,j;
double p1,p2,p3,p4;
while(~scanf("%d%d%d",&n,&m,&k))
{
memset(dp,,sizeof(dp));
scanf("%lf%lf%lf%lf",&p1,&p2,&p3,&p4);
if(p4<eps)
{
printf("0.00000\n");
continue;
}
dp[][]=p4/(-(p1+p2));
double p=p2/(-p1);
double p31=p3/(-p1);
double p41=p4/(-p1);
c[]=p41;
pp[]=;
for(i=;i<=n;i++)
pp[i]=p*pp[i-];
for(i=;i<=n;i++)
{
for(j=;j<=k&&j<=i;j++)
c[j]=p31*dp[i-][j-]+p41;
for(j=k+;j<=n&&j<=i;j++)
c[j]=p31*dp[i-][j-];
double temp=c[]*pp[i-];
for(j=;j<=n;j++)
temp+=c[j]*pp[i-j];
dp[i][i]=temp/(-pp[i]);
dp[i][]=p*dp[i][i]+c[];
for(j=;j<i;j++)
dp[i][j]=p*dp[i][j-]+c[j];
}
printf("%.5lf\n",dp[n][m]);
}
return ;
}
HDU-4089 Activation的更多相关文章
- HDU 4089 Activation 概率DP 难度:3
http://acm.hdu.edu.cn/showproblem.php?pid=4089 这道题中一共有两个循环: 1.事件1 如果一直落在Activation failed事件上,那么就会重新继 ...
- HDU 4089 Activation:概率dp + 迭代【手动消元】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4089 题意: 有n个人在排队激活游戏,Tomato排在第m个. 每次队列中的第一个人去激活游戏,有可能 ...
- HDU 4089 Activation(概率DP)(转)
11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况. 像概率dp,公式推出来就很容易写 ...
- [HDU 4089]Activation[概率DP]
题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...
- 【HDU】4089 Activation
http://acm.hdu.edu.cn/showproblem.php?pid=4089 题意: 有n个人排队等着在官网上激活游戏.主角排在第m个. 对于队列中的第一个人.有以下情况:1.激活失败 ...
- Activation HDU - 4089(概率dp)
After 4 years' waiting, the game "Chinese Paladin 5" finally comes out. Tomato is a crazy ...
- HDU 4089 && UVa 1498 Activation 带环的概率DP
要在HDU上交的话,要用滚动数组优化一下空间. 这道题想了很久,也算是想明白了,就好好写一下吧. P1:激活游戏失败,再次尝试. P2:连接失服务器败,从队首排到队尾. P3:激活游戏成功,队首的人出 ...
- Activation(hdu 4089)
题目:仙5的激活序列.有以下4种情况: 1.注册失败,但是不影响队列顺序 ,概率为p1 2.连接失败,队首的人排到队尾,概率为p2 3.注册成功,队首离开队列,概率为p3 4.服务器崩溃,激活停止,概 ...
- Activation HDU - 4089 (概率DP)
kuangbin的博客 强 #include <bits/stdc++.h> using namespace std; const int MAXN = 2005; const doubl ...
- 【HDOJ】4089 Activation
1. 题目描述长度为n的等待队列,tomato处于第m个,有如下四种可能:(1)激活失败,概率为$p_1$,队列中的顺序不变:(2)连接失败,概率为$p_2$,队头玩家重新排在队尾:(3)激活成功,概 ...
随机推荐
- Android pulltorefresh引用遇到的一个问题
今天在使用pulltorefresh插件的时候遇到了一个让人头疼的问题,在Eclipse中导入要用到的library项目,然后新建一个项目引入Library,显示的是引入成功,如图 而且project ...
- JS1 js获取dom元素方法
js获取dom元素方法 1.通过ID选取元素(getElementById) 1)使用方法:document.getElementById("domId") 其 ...
- 在picture library中取某一图片的大图、小图
public static string GetPicThumbnail(SPFile file, string type) { string thumbnail = "" ...
- C#有关 字符串方法的使用
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...
- 朋友的礼物(英雄会,csdn,高校俱乐部)信封问题,匹配模型
前言: 首先这是一题解,但是重点最代码之后,有耐心的可以直接从代码后看. 上题目:n个人,每个人都有一件礼物想送给他人,他们决定把礼物混在一起,然后每个人随机拿走一件,问恰好有m个人拿到的礼物恰好是自 ...
- 利用CART算法建立分类回归树
常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后 ...
- 24种设计模式--抽象工厂模式【Abstract Factory Pattern】
女娲造人,人是造出来了,世界是热闹了,可是低头一看,都是清一色的类型,缺少关爱.仇恨.喜怒哀乐等情绪,人类的生命太平淡了,女娲一想,猛然一拍脑袋,忘记给人类定义性别了,那怎么办?抹掉重来,然后就把人类 ...
- 安装sql server 2008,提示要删除SQL Server 2005 Express 工具 怎么解决?
x86 修改注册表:HKLM\Software\Microsoft\Microsoft SQL Server\90\Tools\ShellSEM,把 ShellSEM重命名即可. x64 ...
- 【开源】封装HTML5的localstorage
项目名:web-storage-cache 项目地址:https://github.com/WQTeam/web-storage-cache API说明:https://github.com/WQTe ...
- JS-运动框架
写这段代码,是因为之前看过某前RD写过,但在测试过程中发现有不完美的地方. 问题在于判断运动停止条件这里,对于之前停止的判断太片面,只能判断一个条件值时的情况,对于多条件时,会发现运动后的各项值并未达 ...