Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 3241 Solved: 1437
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Source
题解:
莫比乌斯函数或欧拉函数。
莫比乌斯函数详见 Popoqqq的课件 (Orz Po姐)
之后就自己推公式吧。。。
莫比乌斯函数:
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define MAXN 10000010
int prime[],mu[MAXN],qz[MAXN],tot,N;
bitset<MAXN> vis;
int read()
{
int s=,fh=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')fh=-;ch=getchar();}
while(ch>=''&&ch<=''){s=s*+(ch-'');ch=getchar();}
return s*fh;
}
void getmu()
{
int i,j;
mu[]=;
tot=;
for(i=;i<=N;i++)
{
if(vis[i]==)
{
prime[++tot]=i;
mu[i]=-;
}
for(j=;j<=tot&&prime[j]*i<=N;j++)
{
vis[prime[j]*i]=;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
}
void Qz()
{
for(int i=;i<=N;i++)qz[i]=qz[i-]+mu[i];
}
LL calc(int n)
{
int d,pos;
LL sum=;
for(d=;d<=n;d=pos+)
{
pos=n/(n/d);
sum+=(LL)(n/d)*(n/d)*(qz[pos]-qz[d-]);
}
return sum;
}
int main()
{
int i;
LL ans=;
N=read();
getmu();
Qz();
for(i=;i<=tot&&prime[i]<=N;i++)ans+=calc(N/prime[i]);
printf("%lld",ans);
fclose(stdin);
fclose(stdout);
return ;
}
欧拉函数:
#include<bits/stdc++.h>
using namespace std;
#define MAXN 10000010
#define LL long long
bitset<MAXN> vis;
int N,prime[],phi[MAXN],tot;
LL qz[MAXN];
int read()
{
int s=,fh=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')fh=-;ch=getchar();}
while(ch>=''&&ch<=''){s=s*+(ch-'');ch=getchar();}
return s*fh;
}
void geteular()
{
int i,j;
phi[]=;tot=;
for(i=;i<=N;i++)
{
if(vis[i]==)
{
prime[++tot]=i;
phi[i]=i-;
}
for(j=;j<=tot&&prime[j]*i<=N;j++)
{
vis[prime[j]*i]=;
if(i%prime[j]==)
{
phi[prime[j]*i]=phi[i]*prime[j];
break;
}
phi[prime[j]*i]=phi[prime[j]]*phi[i];
}
}
}
void Qz()
{
qz[]=qz[]=;
for(int i=;i<=N;i++)qz[i]=qz[i-]+phi[i];
}
int main()
{
int i,n;
LL ans=;
N=read();
geteular();
Qz();
for(i=;i<=tot;i++)
{
n=N/prime[i];
ans+=(qz[n]*+);
}
printf("%lld",ans);
fclose(stdin);
fclose(stdout);
return ;
}
Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛的更多相关文章
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛
题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...
- luogu2658 GCD(莫比乌斯反演/欧拉函数)
link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...
- 【bzoj2190】【仪仗队】欧拉函数+线性筛(浅尝ACM-J)
向大(hei)佬(e)势力学(di)习(tou) Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪 ...
- BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...
- HDU6434 Count【欧拉函数 线性筛】
HDU6434 I. Count T次询问,每次询问\(\sum_{i=1}^{n}\sum_{j=1}^{n-1}[gcd(i-j,i+j)=1]\) \(T\le 1e5, n \le 2e7\) ...
- 【BZOJ2401】陶陶的难题I 欧拉函数+线性筛
[BZOJ2401]陶陶的难题I 题意:求,n<=1000000,T<=100000 题解:直接做是n*sqrt(n)的,显然会TLE,不过这题a和b都是循环到n,那么就可以进行如下的神奇 ...
- GCD nyoj 1007 (欧拉函数+欧几里得)
GCD nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 The greatest common divisor ...
随机推荐
- 不安装oracle客户端,连接到服务器的oracle (注:针对 odp.net)
前几天在研究怎样不安装oracle客户端去访问oracle,并把里面的数据同步到本地的Sql Server数据库中. 准备工作:首先你得有如下.dll,我这个是针对oracle10g的,如果是更高的版 ...
- 使用dojo遮罩加载进度。
使用dojox.widget.Standby来实现类似视频缓冲加载时候转圈的效果.
- 【转】怎样创建一个Xcode插件(Part 1)
原文:How To Create an Xcode Plugin: Part 1/3 原作者:Derek Selander 译者:@yohunl 译者注:原文使用的是xcode6.3.2,我翻译的 ...
- Masonry等比缩放
第一种: CGFloat width = CGRectGetWidth([[UIScreen mainScreen] bounds]); CGFloat aspectRatio = 1 ...
- Python:元组(tuple)
#!/usr/bin/python3 #元组 tup1 = ('Google', 'Runoob', 1997, 2000) print(type(tup1)) print("tup1 &q ...
- php几个比较高级的函数
1.传递任意数量的函数参数 我们在.NET或者JAVA编程中,一般函数参数个数都是固定的,但是PHP允许你使用任意个数的参数.下面这个示例向你展示了PHP函数的默认参数: 1 2 3 4 5 6 7 ...
- 一些static_cast const_cast
static_cast:干杂活的,那三个都有各自的专有用途,那三个不做的都由这个转型符来做,只要它能做的,用C语法的强制类型转换运算符也一定能够完成:但话又说回来了,C强制类型转换能做的,它可不一定都 ...
- 写了几天的博客-feel
写博客 真的总结我自己的知识.长见识了.记录下自己遇到的东西,算是一个总结,有问题了,还可以回头看一下.很好 真的很好.
- PHPStorm——配置修改
字体修改: FiraCode字体:https://github.com/tonsky/FiraCode 1.双击安装字体 2. 关闭错别字检测
- String和bytes的编码转换
import java.io.UnsupportedEncodingException; import java.nio.charset.Charset; /** * @author 作者 E-mai ...