题目要求若出现x,则不能出现2x,3x

所以我们考虑构造一个矩阵

\(1\ 2\ 4 \ 8……\)

\(3\ 6\ 12\ 24……\)

\(9\ 18\ 36……\)

\(……\)

不难发现,对于一个矩阵,若我选择了一个数x,则在矩阵内该数的相邻格子都不能选,题目就被转化成了玉米田了,可以用状压DP解决

但是直接做是不对的,比如5就没有出现在这个序列中

所以我们可以构造多个矩阵,用乘法原理统计答案即可

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define debug printf("Now is Line : %d\n",__LINE__)
#define file(a) freopen(#a".in","r",stdin);//freopen(#a".out","w",stdout)
#define int long long
#define inf 123456789
#define mod 1000000001
il int read() {
re int x = 0, f = 1; re char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
}
#define rep(i, s, t) for(re int i = s; i <= t; ++ i)
#define drep(i, s, t) for(re int i = t; i >= s; -- i)
#define mem(k, p) memset(k, p, sizeof(k))
#define maxn 100005
int n, m, a[20][20], g[1 << 15], vis[maxn], H, L[20], dp[20][1 << 15], ans = 1;
il void martix(int x) {
H = 0;
rep(i, 1, 18) {
a[i][1] = (i == 1) ? x : a[i - 1][1] * 2;
if(a[i][1] > n) break;
++ H, L[i] = vis[a[i][1]] = 1;
rep(j, 2, 11) {
a[i][j] = a[i][j - 1] * 3;
if(a[i][j] > n) break;
L[i] = j, vis[a[i][j]] = 1;
}
}
}
il int solve() {
rep(i, 0, (1 << L[1]) - 1) dp[1][i] = g[i];
rep(i, 2, H) {
rep(j, 0, (1 << L[i]) - 1) {
if(!g[j]) continue;
dp[i][j] = 0;
rep(k, 0, (1 << L[i - 1]) - 1) {
if(g[k] && (k & j) == 0) dp[i][j] += dp[i - 1][k];
}
}
}
int t = 0;
rep(i, 0, (1 << L[H]) - 1) t = (t + dp[H][i]) % mod;
return t;
}
signed main() {
n = read();
rep(i, 0, (1 << 11) - 1) g[i] = !(i & (i << 1));
rep(i, 1, n) if(!vis[i]) martix(i), ans = ans * solve() % mod;
printf("%lld", ans);
return 0;
}

[HNOI2012]集合选数(状压DP+构造)的更多相关文章

  1. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  2. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  3. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  4. $HNOI2012\ $ 集合选数 状压$dp$

    \(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...

  5. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  6. bzoj 2734 [HNOI2012]集合选数 状压DP+预处理

    这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...

  7. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  8. 【BZOJ-2734】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  9. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  10. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

随机推荐

  1. 由于服务主机:DCOM服务进程占用过多CPU,导致系统卡死

    最近在使用电脑的时候,总是出现电脑死机,而且鼠标也是经常卡在那里不动了,开始以为是鼠标的问题,还换了个鼠标(飙泪中),这还是一个血的教训啊!!!之后打开任务管理器发现CPU占用已经达到100%,而且一 ...

  2. Eclipse设置全局用户名

    -Duser.name=你的名字

  3. 简单的纯js三级联动

    参考这个  日尼禾尔  二级联动 写了三级联动 <!DOCTYPE html> <html> <head> <meta charset="UTF-8 ...

  4. 公钥密码RSA算法记录

    介绍: RSA算法是1978年由 R.Rivest.A.Shamir.L.Adleman提出的一种用数论构造的.也是迄今为止理论上最为成熟.完善的公钥密码体,该体制已得到广泛的应用. 算法描述: 1. ...

  5. Windows7安装 docker-compose的过程

    Docker在Windows7系统上安装成功后[详情见Windows7下docker的安装以及遇到的问题],要用到docker-compose相关命令,而docker-compose相关命令在dock ...

  6. centos7安装docker并设置开机自启以及常用命令

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...

  7. zabbix-agent(zabbix-proxy)配置

    PidFile=/var/run/zabbix/zabbix_agentd.pidLogFile=/var/log/zabbix/zabbix_agentd.logLogFileSize=30Serv ...

  8. weblogic补丁下载与安装补丁的方法

    文章目录1.根据漏洞报告下载补丁2.补丁包上传解压到Linux3.关于OPatch4.安装补丁4.1单个补丁安装4.2查看已安装的补丁4.3多个补丁安装4.4单个补丁回滚4.5多个补丁回滚4.6验证补 ...

  9. Core官方DI解析(2)-ServiceProvider

    ServiceProvider ServiceProvider是我们用来获取服务实例对象的类型,它也是一个特别简单的类型,因为这个类型本身并没有做什么,其实以一种代理模式,其核心功能全部都在IServ ...

  10. 使用Swagger辅助开发Fabric Application的Web API

    前面的几篇博客,我们已经把Fabric环境搭建好了,也可以使用Go开发ChainCode了,那么我们在ChainCode开发完毕后,可以通过CLI来测试ChainCode的正确性,ChainCode开 ...