[HNOI2012]集合选数(状压DP+构造)
题目要求若出现x,则不能出现2x,3x
所以我们考虑构造一个矩阵
\(1\ 2\ 4 \ 8……\)
\(3\ 6\ 12\ 24……\)
\(9\ 18\ 36……\)
\(……\)
不难发现,对于一个矩阵,若我选择了一个数x,则在矩阵内该数的相邻格子都不能选,题目就被转化成了玉米田了,可以用状压DP解决
但是直接做是不对的,比如5就没有出现在这个序列中
所以我们可以构造多个矩阵,用乘法原理统计答案即可
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define debug printf("Now is Line : %d\n",__LINE__)
#define file(a) freopen(#a".in","r",stdin);//freopen(#a".out","w",stdout)
#define int long long
#define inf 123456789
#define mod 1000000001
il int read() {
re int x = 0, f = 1; re char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
}
#define rep(i, s, t) for(re int i = s; i <= t; ++ i)
#define drep(i, s, t) for(re int i = t; i >= s; -- i)
#define mem(k, p) memset(k, p, sizeof(k))
#define maxn 100005
int n, m, a[20][20], g[1 << 15], vis[maxn], H, L[20], dp[20][1 << 15], ans = 1;
il void martix(int x) {
H = 0;
rep(i, 1, 18) {
a[i][1] = (i == 1) ? x : a[i - 1][1] * 2;
if(a[i][1] > n) break;
++ H, L[i] = vis[a[i][1]] = 1;
rep(j, 2, 11) {
a[i][j] = a[i][j - 1] * 3;
if(a[i][j] > n) break;
L[i] = j, vis[a[i][j]] = 1;
}
}
}
il int solve() {
rep(i, 0, (1 << L[1]) - 1) dp[1][i] = g[i];
rep(i, 2, H) {
rep(j, 0, (1 << L[i]) - 1) {
if(!g[j]) continue;
dp[i][j] = 0;
rep(k, 0, (1 << L[i - 1]) - 1) {
if(g[k] && (k & j) == 0) dp[i][j] += dp[i - 1][k];
}
}
}
int t = 0;
rep(i, 0, (1 << L[H]) - 1) t = (t + dp[H][i]) % mod;
return t;
}
signed main() {
n = read();
rep(i, 0, (1 << 11) - 1) g[i] = !(i & (i << 1));
rep(i, 1, n) if(!vis[i]) martix(i), ans = ans * solve() % mod;
printf("%lld", ans);
return 0;
}
[HNOI2012]集合选数(状压DP+构造)的更多相关文章
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
随机推荐
- redis.conf常用配置说明
最近学了 Redis,在 Linux 上安装的,接下来就简单讲解一下修改 Redis 配置文件 修改密码: 新安装的 Redis 是默认没有密码的,可以给Redis设置一个密码 先进入 Redis 的 ...
- Vmware安装CentOs7+gitlab(一)
本篇文章主要介绍了VMware安装Centos7超详细过程(图文),具有一定的参考价值,感兴趣的小伙伴们可以参考一下 1.软硬件准备 软件:推荐使用VMwear,我用的是VMwear 12 镜像:Ce ...
- SpringBoot 动态更新 resources 目录的文件
一.前言 SpringBoot 打成 Jar 包形式运行后 ,resources 目录下文件的读取修改和原来不太一样,网上比较多的是关于读取的方式,修改的几乎没有,终于在 stackoverflow ...
- 委托的多线程方法BeginInvoke
同步方法和异步方法: 同步方法调用在程序继续执行之前需要等待同步方法执行完毕返回结果.(比如烧水泡茶,需要等水烧开了才能继续泡茶) 异步方法则在被调用之后立即返回以便程序在被调用方法完成其任务的同时执 ...
- Web后端 JAVA学习之路
1.Java分类 Java按应用来分,可以分为J2ME(手机版),J2SE(标准版),J2EE(企业版)三部分. ・J2ME:已经被安卓开发取代. ・J2SE:Java的核心类,其中包括桌面应用,但一 ...
- SAP MM '独立/集中'等于1的MTS物料MRP运行后合并需求触发PR
SAP MM '独立/集中'等于1的MTS物料MRP运行后合并需求触发PR Test data 独立与集中: 1 (仅个别需求) STO 1, 这是一个公司间STO,从国内生产基本转入香港贸易公司, ...
- 基于django的视频点播网站开发
项目名称 基于django的视频点播网站开发 项目背景 学习完毕python和django之后,想找个项目练练手,本来想写个博客项目练手,无奈别人已经写过了,所以笔者就打算写一个视频点播网站,因为笔者 ...
- CTF杂项之音频隐写
题目来自bugku 二话不说,直接上图 由题目可以看出,这题需要用到一个KEY,加上又是一段音频,很容易联想到一个著名的音频隐写解密软件Mp3stego 直接上工具 ok,成功Get Flag
- debian9.6修改系统语言
(中文改英文) 在VM虚拟机中安装debian9.6(查看版本命令 cat /etc/debian_version ),安装时选择语言为中文:在控制台登录操作时,大部分提示信息显示为乱码,修改中文语言 ...
- 前端之BOM
老师的博客:https://www.cnblogs.com/liwenzhou/p/8011504.html BOM(Browser Object Model)是指浏览器对象模型,它使 JavaScr ...