LOJ 6281 数列分块入门 5
简化版题意
给出一个长为n的数列,以及n个操作,操作涉及区间开方(每个数都向下取整),区间求和,保证所有数都为有符号32位正整数。
N<=50000
Solution
首先我们先思考:
一个有符号32位正整数最多只能被开方几次就会得到相同的值?
\(Example\):\(2147483647=2^{31}-1\)
最多5次(由于是向下取整)
所以,我们将数列中的每一个数,都开方5次,复杂度为\(O(5n)\)
然后我们再来考虑如何分块
对于每一个块,我们可以打一个标记\(tag[i]\)
表示第\(i\)块是否全为\(1\)
然后我们就可以进行分块处理啦
对于区间\([l,r]\)
对于区间求和,暴力分块统计即可
对于操作二
对于不完整的块,暴力开方即可
对于完整的块,先利用\(tag[i]\)判断是否需要开方,然后继续暴力
完结撒花!
贴代码
\\还是很可读的,就不给注释了
#include<bits/stdc++.h>
using namespace std;
const int siz=1e6+10;
int num[siz];
int tag[siz],s[siz],b[siz];
int n,len;
int sum(int l,int r)
{
int ans=0;
if(b[l]==b[r])
{
for(int i=l;i<=r;++i)
ans+=num[i];
return ans;
}
for(int i=l;b[i]==b[l];++i) ans+=num[i];
for(int i=r;b[i]==b[r];--i) ans+=num[i];
for(int i=b[l]+1;i<=b[r]-1;++i) ans+=s[i];
return ans;
}
void add(int l,int r)
{
if(b[l]==b[r])
{
if(tag[b[l]]) return ;
for(int i=l;i<=r;++i)
s[b[i]]-=num[i],num[i]=sqrt(num[i]),s[b[i]]+=num[i];
return ;
}
if(!tag[b[l]])
for(int i=l;b[i]==b[l];++i)
s[b[i]]-=num[i],num[i]=sqrt(num[i]),s[b[i]]+=num[i];
if(!tag[b[r]])
for(int i=r;b[i]==b[r];--i)
s[b[i]]-=num[i],num[i]=sqrt(num[i]),s[b[i]]+=num[i];
for(int i=b[l]+1;i<=b[r]-1;++i)
{
if(tag[i]) continue;
tag[i]=1;
for(int j=len*(i-1)+1;b[j]==i;++j)
{
s[i]-=num[j],num[j]=sqrt(num[j]),s[i]+=num[j];
if(num[j]>1) tag[i]=0;
}
}
}
int main()
{
scanf("%d",&n);
len=sqrt(n);
for(int i=1;i<=n;++i)
scanf("%d",&num[i]);
for(int i=1;i<=n;++i)
{
b[i]=(i-1)/len+1;
s[b[i]]+=num[i];
}
int opt,l,r,c;
for(int i=1;i<=n;++i)
{
scanf("%d%d%d%d",&opt,&l,&r,&c);
if(opt) printf("%d\n",sum(l,r));
else add(l,r);
}
return 0;
}
LOJ 6281 数列分块入门 5的更多相关文章
- LOJ #6281. 数列分块入门 5-分块(区间开方、区间求和)
#6281. 数列分块入门 5 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 5 题目描述 给出 ...
- LOJ.6281.数列分块入门5(分块 区间开方)
题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...
- LOJ——#6277. 数列分块入门 1
~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...
- LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)
#6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给 ...
- LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)
#6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
- LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)
#6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
- LOJ #6282. 数列分块入门 6-分块(单点插入、单点查询、数据随机生成)
#6282. 数列分块入门 6 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 1 题目描述 给出 ...
- LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)
#6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 题目描述 给出一个 ...
- LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))
#6279. 数列分块入门 3 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 3 题目描述 给 ...
随机推荐
- 基于IIS的WCF
(1)创建WCF服务应用程序 (2)配置IIS 将WCF服务应用程序配置IIS网站,需要使用.net4.0集成版本的程序池 (3)使用SvcUtil.exe生成客户端代码和配置 SvcUtil.exe ...
- 携程Apollo一键编译脚本+部署实现
系统编译安装 ubuntu16.11 java 1.8 系统规划 Portal共用 其它环境每个两台机器 mysql都做主从,所以每个环境的机器上都会安装admin 服务,config服务,以及一个m ...
- Linux常用查找命令
第一种:grep命令 示例: 第二种:find命令 示例: 第三种:locate命令 示例: 第四种:whereis命令 示例: 第五种:which命令 示例:
- 生鲜配送管理系统_升鲜宝V2.0 小标签打印功能说明_15382353715
小标签打印说明 小标签打印可以打印本系统的订单商品数量,也可以把外部的订单商品导入本系统进行打印. 打印本系统中的订单商品操作说明 1.1 界面说明 1.2 查询条件 1.2.1 ...
- DVWA 黑客攻防演练(十二) DOM型 XSS 攻击 DOM Based Cross Site Scripting
反射型攻击那篇提及到,如何是"数据是否保存在服务器端"来区分,DOM 型 XSS 攻击应该算是 反射型XSS 攻击. DOM 型攻击的特殊之处在于它是利用 JS 的 documen ...
- Visual Studio插件开发基础
Visual Studio插件主要有两种:Add-in 和 VSX(Visual Studio eXtensibility) 两者区别可参考这篇文章:Visual Studio Extensions ...
- 芒果绿的blog
--------------------------------------------------------------这是芒果绿的blog!!-------------------------- ...
- 进行Spark,Kafka针对Kerberos相关配置
1. 提交任务的命令 spark-submit \--class <classname> \--master yarn \--deploy-mode client \--executor- ...
- kvm虚拟化
1.kvm虚拟化介绍 什么是虚拟化 虚拟化就是通过模拟计算机硬件(cpu,内存,硬盘,网卡)来实现在一台物理服务器上运行同时多个不同的操作系统,并且使每个操作系统之间都是互相隔离的 为什么要学习虚拟化 ...
- ansible_playbook 一键搭建集群架构
目录 基础优化 SSH.Ansible,批量管理服务项目 剧本开始-----.10分钟左右 mail.yaml base.yaml rsync.yaml nfs.yaml web.yaml tweb. ...