Get The Treasury

http://acm.hdu.edu.cn/showproblem.php?pid=3642

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
Jack knows that there is a great underground treasury
in a secret region. And he has a special device that can be used to detect
treasury under the surface of the earth. One day he got outside with the device
to ascertain the treasury. He chose many different locations on the surface of
the earth near the secret region. And at each spot he used the device to detect
treasury and got some data from it representing a region, which may contain
treasury below the surface. The data from the device at each spot is six
integers x1, y1, z1, x2,
y2 and z2 (x1<x2,
y1<y2, z1<z2). According to
the instruction of the device they represent the range of x, y and z coordinates
of the region. That is to say, the x coordinate of the region, which may contain
treasury, ranges from x1 to x2. So do y and z coordinates.
The origin of the coordinates is a fixed point under the ground.
Jack can’t
get the total volume of the treasury because these regions don’t always contain
treasury. Through years of experience, he discovers that if a region is detected
that may have treasury at more than two different spots, the region really exist
treasure. And now Jack only wants to know the minimum volume of the
treasury.
Now Jack entrusts the problem to you.

 
Input
The first line of the input file contains a single
integer t, the number of test cases, followed by the input data for each test
case.
Each test case is given in some lines. In the first line there is an
integer n (1 ≤ n ≤ 1000), the number of spots on the surface of the earth that
he had detected. Then n lines follow, every line contains six integers
x1, y1, z1, x2, y2 and
z2, separated by a space. The absolute value of x and y coordinates
of the vertices is no more than 106, and that of z coordinate is no
more than 500.

 
Output
For each test case, you should output “Case a: b” in a
single line. a is the case number, and b is the minimum volume of treasury. The
case number is counted from one.
 
Sample Input
2
1
0 0 0 5 6 4
3
0 0 0 5 5 5
3 3 3 9 10 11
3 3 3 13 20 45
 
Sample Output
Case 1: 0
Case 2: 8
 
Source
 
Recommend
lcy   |   We have carefully selected several similar
problems for you:  2871 3308 3641 3397 1540 
 
题意:求n个长方体至少相交3次的体积和
z这一维只有500,所以枚举z轴,然后就相当于二维的扫描线
线段树维护区间完全覆盖1、2、3次的长度
 
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
#define N 1001
#define lc k<<1,l,mid
#define rc k<<1|1,mid+1,r
struct node
{
int l,r,h,f;
bool operator < (node p)const
{
return h<p.h;
}
}a[N<<];
struct edge
{
int x,xx,y,yy,z,zz;
}b[N];
int sum1[N<<],sum2[N<<],sum3[N<<],f[N<<],has[N<<],has2[N<<];
long long ans;
int n,cnt,opl,opr,w;
void up(int k,int l,int r)
{
if(f[k]>=) sum3[k]=has2[r+]-has2[l];
else if(f[k]==)
{
sum3[k]=sum1[k<<]+sum1[k<<|];
sum2[k]=has2[r+]-has2[l];
}
else if(f[k]==)
{
sum3[k]=sum2[k<<]+sum2[k<<|];
sum2[k]=sum1[k<<]+sum1[k<<|];
sum1[k]=has2[r+]-has2[l];
}
else
{
sum3[k]=sum3[k<<]+sum3[k<<|];
sum2[k]=sum2[k<<]+sum2[k<<|];
sum1[k]=sum1[k<<]+sum1[k<<|];
}
}
void change(int k,int l,int r)
{
if(opl<=l && r<=opr)
{
f[k]+=w;
up(k,l,r);
return;
}
int mid=l+r>>;
if(opl<=mid) change(lc);
if(opr>mid) change(rc);
up(k,l,r);
}
int main()
{
int T;
scanf("%d",&T);
for(int t=;t<=T;t++)
{
ans=;
cnt=;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d%d%d%d%d%d",&b[i].x,&b[i].y,&b[i].z,&b[i].xx,&b[i].yy,&b[i].zz);
has[i*-]=b[i].z; has[i*]=b[i].zz;
}
sort(has+,has+*n+);
cnt=unique(has+,has+*n+)-(has+);
for(int i=;i<cnt;i++)
{
int sz=;
for(int j=;j<=n;j++)
if(b[j].z<=has[i] && b[j].zz>=has[i+])
{
a[++sz].l=b[j].x; a[sz].r=b[j].xx; a[sz].h=b[j].y; a[sz].f=;
a[++sz].l=b[j].x; a[sz].r=b[j].xx; a[sz].h=b[j].yy; a[sz].f=-;
has2[sz-]=b[j].x; has2[sz]=b[j].xx;
}
sort(has2+,has2+sz+);
int m=unique(has2+,has2+sz+)-(has2+);
sort(a+,a+sz+);
memset(sum1,,sizeof(sum1));
memset(sum2,,sizeof(sum2));
memset(sum3,,sizeof(sum3));
for(int j=;j<=sz;j++)
{
opl=lower_bound(has2+,has2+m+,a[j].l)-has2;
opr=lower_bound(has2+,has2+m+,a[j].r)-has2-;
w=a[j].f;
change(,,m);
ans+=1ll*sum3[]*(a[j+].h-a[j].h)*(has[i+]-has[i]);
}
}
printf("Case %d: %I64d\n",t,ans);
}
}
 

hdu 3642 Get The Treasury的更多相关文章

  1. hdu 3642 Get The Treasury(扫描线)

    pid=3642" style="">题目链接:hdu 3642 Get The Treasury 题目大意:三维坐标系,给定若干的长方体,问说有多少位置被覆盖3次 ...

  2. HDU 3642 - Get The Treasury - [加强版扫描线+线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  3. HDU 3642 Get The Treasury (线段树扫描线)

    题意:给你一些长方体,问你覆盖三次及以上的体积有多大 首先我们观察x轴y轴一样很大,但是z轴很小,所以我们可以枚举z轴(-500,500),注意我们枚举的是每一段长度为一的z轴的xy轴的面积而不是点. ...

  4. HDU 3642 Get The Treasury (线段树扫描线,求体积并)

    参考链接 : http://blog.csdn.net/zxy_snow/article/details/6870127 题意:给你n个立方体,求覆盖三次以上(包括三次)的区域的体积 思路:先将z坐标 ...

  5. HDU 3642 Get The Treasury 线段树+分层扫描线

    http://www.acmerblog.com/hdu-3642-get-the-treasury-6603.html 学习:三维就是把竖坐标离散化分层,每一层进行线段树二维面积并就好了

  6. hdu 3642 Get The Treasury (三维的扫描线)

    题目大意: 给出N个立方体. 求一个三维空间中被包围三次的空间的体积之和. 思路分析: 发现Z的范围非常小.那么我们能够枚举Z轴,然后对 x y做扫描线. 并且不用枚举全部的Z ,仅仅须要将Z离散化之 ...

  7. HDU - 3642 Get The Treasury(线段树求体积交)

    https://cn.vjudge.net/problem/HDU-3642 题意 求立方体相交至少3次的体积. 分析 三维的呢..首先解决至少覆盖三次的问题.则用三个标记,更新时的细节要注意. 注意 ...

  8. HDU 3642 Get The Treasury ( 线段树 求长方体体积并 )

    求覆盖三次及其以上的长方体体积并. 这题跟 http://wenku.baidu.com/view/d6f309eb81c758f5f61f6722.html 这里讲的长方体体积并并不一样. 因为本题 ...

  9. Q - Get The Treasury - HDU 3642 (扫面线求体积)

    题意:求被三个或三个以上立方体重合的体积 分析:就是平面面积的加强,不过归根还是一样的,可以把z轴按照从小向大分区间N个,然后可以得到N个平面,用平面重复三次以上的在和高度计算体积. ******** ...

随机推荐

  1. jquery的各种插件调用(有些已经过时,以备注,其他的一些可以闲的时候用作拆解)

    jquery的valiteDate验证插件应用 <!DOCTYPE html> <html>        < head>            < meta ...

  2. 【CJOJ P1333】【HNOI2012】矿场搭建

    [HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖 ...

  3. 清橙A1212:剪枝

    题面 清橙 Sol 一种新的树上\(DP\)姿势 从左往右按链\(DP\) 做法: 维护两个栈\(S1\),\(S2\) \(S1\)存当前的链 \(S2\)存分叉点以下要改的链 \(Dfs\),弄一 ...

  4. HiveQL DML 常用QL示例资料

    hive 2.1.1  DML操作 将文件加载到hive表 //官方指导 LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tabl ...

  5. hive数据库的哪些函数操作是否走MR

    平时我们用的HIVE 我们都知道 select * from table_name 不走MR 直接走HTTP hive 0.10.0为了执行效率考虑,简单的查询,就是只是select,不带count, ...

  6. JS中的闭包问题

    一.闭包:在函数外也可使用局部变量的特殊语法现象 全局变量 VS 局部变量: 全局变量:优点:可共享,可重用; 缺点:在任意位置都可随意修改——全局污染 局部变量:优点:安全 缺点:不可共享,不可重用 ...

  7. TestNG的简单使用

    TestNG的简单使用 TestNG(Test Next Generation)是一个测试框架,其灵感来自JUnit和NUnit,但同时引入了一些新的功能,使其功能更强大,使用更方便. TestNG是 ...

  8. c# redis 操作类库推荐:StackExchange.Redis.Extensions

    StackExchange是一个优秀的c# redis客户端,但是存在操作略为繁琐的弊端,为了简化操作,使用 StackExchange.Redis.Extensions成为了一个非常值得推荐的选择. ...

  9. php notice提示

    php页面内添加error_reporting(E_ALL & ~E_WARNING & ~E_NOTICE ); OK.

  10. postgresql数据操作

    windows下操作postgresql 删除数据库:dropdb.exe -U postgres 数据库名称 创建数据库createdb.exe -U postgres lilei_db1--lil ...