最大权闭合子图

胡伯涛论文真是个好东西.jpg

求一个有向图的最大权闭合子图,常应用于有先决条件的最优化问题中

将所有正权点与源点相连,容量为点权;

将所有负权点与汇点相连,容量为点权的相反数;

将原图中的边相连,容量为INF

可以发现,所有正点权之和-最小割即为答案

证明见胡伯涛论文

如何输出该子图

可以发现求出最小割后的残量网络中与s点相连的点即为所求

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <queue>
using namespace std;
const int MAXN=305,MAXM=20005;
int n,s,t,m,head[MAXN],cur[MAXN],dep[MAXN],maxflow,nume;
struct edge{
int to,nxt,flow,cap;
}e[MAXM];
void adde(int from,int to,int cap){
e[++nume].to=to;
e[nume].nxt=head[from];
head[from]=nume;
e[nume].cap=cap;
}
queue<int >q;
bool bfs(){
memset(dep,0,sizeof(dep));
q.push(s);dep[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(!dep[v]&&e[i].flow<e[i].cap){
dep[v]=dep[u]+1;
q.push(v);
}
}
}
return dep[t];
}
int dfs(int u,int flow){
if(u==t) return flow;
int tot=0;
for(int &i=cur[u];i&&tot<flow;i=e[i].nxt){
int v=e[i].to;
if(dep[v]==dep[u]+1&&e[i].flow<e[i].cap){
if(int t=dfs(v,min(flow-tot,e[i].cap-e[i].flow))){
e[i].flow+=t;
e[((i-1)^1)+1].flow-=t;
tot+=t;
}
}
}
return tot;
}
void dinic(){
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=head[i];
maxflow+=dfs(s,0x3f3f3f3f);
}
}
int main(){
cin>>m>>n;
int tot=0;
s=0;t=m+n+1;
for(int i=1;i<=m;i++){
int t;
cin>>t;
tot+=t;
adde(s,i,t);adde(i,s,0);
while(cin.peek()!='\r'&&cin.peek()!='\n'&&cin.peek()!=EOF){
scanf("%d",&t);
adde(i,t+m,0x3f3f3f3f);
adde(t+m,i,0);
}
}
for(int i=1;i<=n;i++){
int wei;
cin>>wei;
adde(i+m,t,wei);adde(t,i+m,0);
}
dinic();
for(int i=1;i<=m;i++) if(dep[i]) printf("%d ",i);
printf("\n");
for(int i=m+1;i<=m+n;i++) if(dep[i]) printf("%d ",i-m);
printf("\n");
cout<<tot-maxflow<<endl;
}

洛谷 [P2762] 太空飞行计划问题的更多相关文章

  1. 洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码

    洛谷 P2762 太空飞行计划问题 P3410 拍照[最大权闭合子图]题解+代码 最大权闭合子图 定义: 如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图.每个点都有一个权 ...

  2. 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)

    https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...

  3. 洛谷 - P2762 - 太空飞行计划问题 - 最小割

    https://www.luogu.org/problemnew/solution/P2762 最小割对应的点,在最后一次更新中dinic的bfs会把他的dep重置掉.所以可以根据这个性质复原最小割. ...

  4. 洛谷P2762 太空飞行计划问题

    这题套路好深......没想渠. 题意:给你若干个设备,若干个任务. 每个任务需要若干设备,设备可重复利用. 完成任务有钱,买设备要钱. 问最大总收益(可以什么任务都不做). 解:最大权闭合子图. 对 ...

  5. 洛谷P2762 太空飞行计划问题(最小割)

    传送门 我们可以把实验放在左边,仪器放在右边,点有点权,然后连对应的有向边,就是求一个最大权闭合图,可以转化为最小割来做(关于这具体是个啥……可以百度胡伯涛<最小割模型在信息学竞赛中的应用> ...

  6. 洛谷P2762 太空飞行计划问题(最大权闭合图)

    题意 有$m$个实验,$n$中器材,每个实验需要使用一些器材 每个实验有收入,每个器材有花费 最大化收入 - 花费 Sol 最大权闭合图的经典应用 从$S$向每个实验连流量为该实验收入的边 从每个器材 ...

  7. 洛谷 P2762 太空飞行计划问题 【最大权闭合子图+最小割】

    --一道难在读入的题. 最后解决方案直接getline一行然后是把读优拆掉放进函数,虽然很丑但是过了. 然后就是裸的最大权闭合子图了,把仪器当成负权点向t连流量为其价格的边,s向实验连流量为实验报酬的 ...

  8. 网络流24题:P2762 太空飞行计划问题

    P2762 太空飞行计划问题 题目背景 题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,E ...

  9. P2762 太空飞行计划问题(网络流24题之一)

    题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的 ...

随机推荐

  1. 五 : springMVC拦截器

    springMVC拦截器的实现一般有两种方式 第一种方式是要定义的Interceptor类要实现了Spring的HandlerInterceptor 接口 第二种方式是继承实现了HandlerInte ...

  2. UEP-标签

    这里的标签都是常用不好理解的: formatfunc="showFormatNumer" 显示数字在页面上 ockedcolumnnum="6" 几列是不动的 ...

  3. ReentrantLock与Condition构造有界缓存队列与数据栈

    通过ReentrantLock与Condition的设计,以数组为基础,可以实现简单的队列和栈的数据结构,临界阻塞的效果. ReentrantLock相对于synchronized比较大的一个区别是有 ...

  4. Spark算子--filter

    filter--Transformation类算子 代码示例 result    

  5. redis常见命令使用

    这篇经验主要介绍了Redis常见用的一些操作命令.这篇例子是在windows上操作的.linux类似.写的一些基础,大神就别看了. 工具/原料   redis windows 方法/步骤   1 可以 ...

  6. linux 下 tomcat 安装

    下载 根据已安装的jdk版本选择合适的版本,否则不兼容 https://tomcat.apache.org/whichversion.html 选择合适的压缩包 源码 二进制:已针对固定的操作系统和机 ...

  7. 月薪20k以上的高级程序员需要学习哪些技术呢?

    课程内容: 源码分析.分布式架构.微服务架构.性能优化.团队协作效率.双十一项目实战 适用对象: 1-5年或更长软件开发经验,没有工作经验但基础非常扎实,对java工作机制,常用设计思想,常用java ...

  8. git学习网址

    git的学习网址:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/

  9. 1 let和const

    let命令 1)let声明的变量只在let命令所在的代码块内有效,如:   { let a = ; ;} a // ReferenceError: a is not defined. b 对于for循 ...

  10. 红米 Note3 (kenzo)刷入 Lineage OS

    红米 Note3 (kenzo)刷入Lineage OS 的过程 详细的教程请看 Install LineageOS on kenzo 本文做一些额外的补充 0 刷机之的准备工作 如果登陆了 Goog ...