(二) Keras 非线性回归
视频学习来源
https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553
笔记
Keras 非线性回归
import keras import numpy as np import matplotlib.pyplot as plt #Sequential按序列构成的模型 from keras.models import Sequential #Dense全连接层 from keras.layers import Dense
#使用numpy生成200个随机点 x_data=np.linspace(-0.5,0.5,200) #均匀分布 noise=np.random.normal(0,0.02,x_data.shape) #均值为0,方差为0.02 y_data=np.square(x_data)+noise #显示随机点 plt.scatter(x_data,y_data) plt.show()
#构建一个顺序模型
model=Sequential()
#在模型中添加一个全连接层
model.add(Dense(units=1,input_dim=1)) #sgd:stochastic gradient descent 随机梯度下降算法
#mse:mean square error 均方误差
model.compile(optimizer='sgd',loss='mse') #训练3000次
for step in range(3000):
#每次训练一个批次
cost=model.train_on_batch(x_data,y_data)
#每500个batch打印一次cost值
if step%500==0:
print('cost:',cost) #x_data输入网络中,得到预测值y_pred
y_pred=model.predict(x_data) #显示随机点
plt.scatter(x_data,y_data)
#显示预测结果
plt.plot(x_data,y_pred,'r-',lw=3)
plt.show()
cost: 0.018438313
cost: 0.006655791
cost: 0.0058503654
cost: 0.0057009794
cost: 0.0056732716
cost: 0.005668133
加入隐藏层
#导入SGD,(后面要修改SGD的值)
from keras.optimizers import SGD
#构建一个顺序模型
model=Sequential()
#在模型中添加 1-10-1 ,一个输入,一个输出,中间10个隐藏层
model.add(Dense(units=10,input_dim=1)) #1-10部分
model.add(Dense(units=1)) #10-1部分 等效 model.add(Dense(units=1,input_dim=10)) #增大sgd算法的学习率,默认值为0.01,
#查看函数默认值可在jupyter中shift+Tab+Tab,前提是已经导入
sgd=SGD(lr=0.3) #学习速率0.3 #sgd:stochastic gradient descent 随机梯度下降算法
#mse:mean square error 均方误差
model.compile(optimizer=sgd,loss='mse') #和上面不同的是没有引号 #训练3000次
for step in range(3000):
#每次训练一个批次
cost=model.train_on_batch(x_data,y_data)
#每500个batch打印一次cost值
if step%500==0:
print('cost:',cost) #x_data输入网络中,得到预测值y_pred
y_pred=model.predict(x_data) #显示随机点
plt.scatter(x_data,y_data)
#显示预测结果
plt.plot(x_data,y_pred,'r-',lw=3)
plt.show()
cost: 0.1012776
cost: 0.005666962
cost: 0.005666963
cost: 0.0056669624
cost: 0.005666963
cost: 0.005666963
设置激活函数
#设置激活函数,默认的激活函数为none也就是输入=输出,线性
from keras.layers import Dense,Activation
#设置激活函数方式1
#激活函数为tanh #构建一个顺序模型
model=Sequential()
#在模型中添加 1-10-1 ,一个输入,一个输出,中间10个隐藏层
model.add(Dense(units=10,input_dim=1)) #1-10部分 model.add(Activation('tanh')) #双曲正切函数 model.add(Dense(units=1)) #10-1部分 等效 model.add(Dense(units=1,input_dim=10)) model.add(Activation('tanh')) #双曲正切函数 #增大sgd算法的学习率,默认值为0.01,
#查看函数默认值可在jupyter中shift+Tab+Tab,前提是已经导入
sgd=SGD(lr=0.3) #学习速率0.3 #sgd:stochastic gradient descent 随机梯度下降算法
#mse:mean square error 均方误差
model.compile(optimizer=sgd,loss='mse') #和上面不同的是没有引号 #训练3000次
for step in range(3000):
#每次训练一个批次
cost=model.train_on_batch(x_data,y_data)
#每500个batch打印一次cost值
if step%500==0:
print('cost:',cost) #x_data输入网络中,得到预测值y_pred
y_pred=model.predict(x_data) #显示随机点
plt.scatter(x_data,y_data)
#显示预测结果
plt.plot(x_data,y_pred,'r-',lw=3)
plt.show()
cost: 0.049393196
cost: 0.003914159
cost: 0.0011130853
cost: 0.00090270495
cost: 0.00040989672
cost: 0.00045533947
#设置激活函数方式2
#激活函数为relu #jupyter中 注释为 ctrl+/ #构建一个顺序模型
model=Sequential()
#在模型中添加 1-10-1 ,一个输入,一个输出,中间10个隐藏层
model.add(Dense(units=10,input_dim=1,activation='relu')) #1-10部分 model.add(Dense(units=1,activation='relu'))#10-1部分 等效 model.add(Dense(units=1,input_dim=10)) #增大sgd算法的学习率,默认值为0.01,
#查看函数默认值可在jupyter中shift+Tab+Tab,前提是已经导入
sgd=SGD(lr=0.3) #学习速率0.3 #sgd:stochastic gradient descent 随机梯度下降算法
#mse:mean square error 均方误差
model.compile(optimizer=sgd,loss='mse') #和上面不同的是没有引号 #训练3000次
for step in range(3000):
#每次训练一个批次
cost=model.train_on_batch(x_data,y_data)
#每500个batch打印一次cost值
if step%500==0:
print('cost:',cost) #x_data输入网络中,得到预测值y_pred
y_pred=model.predict(x_data) #显示随机点
plt.scatter(x_data,y_data)
#显示预测结果
plt.plot(x_data,y_pred,'r-',lw=3)
plt.show()
cost: 0.0066929995
cost: 0.0004892901
cost: 0.00047061846
cost: 0.00046780292
cost: 0.00046706214
cost: 0.00046700903
shift+Tab+Tab 效果如下

(二) Keras 非线性回归的更多相关文章
- Keras 构建DNN 对用户名检测判断是否为非法用户名(从数据预处理到模型在线预测)
一. 数据集的准备与预处理 1 . 收集dataset (大量用户名--包含正常用户名与非法用户名) 包含两个txt文件 legal_name.txt ilegal_name.txt. 如下图所 ...
- 在Keras模型中one-hot编码,Embedding层,使用预训练的词向量/处理图片
最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的 ...
- 文本分类:Keras+RNN vs传统机器学习
摘要:本文通过Keras实现了一个RNN文本分类学习的案例,并详细介绍了循环神经网络原理知识及与机器学习对比. 本文分享自华为云社区<基于Keras+RNN的文本分类vs基于传统机器学习的文本分 ...
- 几个可用于数据挖掘和统计分析的java库
http://itindex.net/blog/2015/01/09/1420751820000.html WEKA:WEKA是一个可用于数据挖掘任务的机器学习算法集合.该算法可以直接应用到数据集或从 ...
- Java第三方工具库/包汇总
一.科学计算或矩阵运算库 科学计算包: JMathLib是一个用于计算复杂数学表达式并能够图形化显示计算结果的Java开源类库.它是Matlab.Octave.FreeMat.Scilab的一个克隆, ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)
说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式 ...
- keras实现简单性别识别(二分类问题)
keras实现简单性别识别(二分类问题) 第一步:准备好需要的库 tensorflow 1.4.0 h5py 2.7.0 hdf5 1.8.15.1 Keras 2.0.8 opencv-p ...
- keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)
引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/ ...
- 1.keras实现-->自己训练卷积模型实现猫狗二分类(CNN)
原数据集:包含 25000张猫狗图像,两个类别各有12500 新数据集:猫.狗 (照片大小不一样) 训练集:各1000个样本 验证集:各500个样本 测试集:各500个样本 1= 狗,0= 猫 # 将 ...
随机推荐
- Java基础面试知识点总结
微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...
- @GeneratedValue源码解析
JPA要求每一个实体必须有且只有一个主键,而@GeneratedValue提供了主键的生成策略,这就是@GeneratedValue注解存在的意义.本文将浅析@GeneratedValue的源码. @ ...
- js数组中的find(), findIndex(), filter(), forEach(), some(), every(), map(), reduce()方法的详解和应用实例
1. find()与findIndex() find()方法,用于找出第一个符合条件的数组成员.它的参数是一个回调函数,所有数组成员依次执行该回调函数,直到找出第一个返回值为true的成员,然后返回该 ...
- 5分钟解决google play上架App设置隐私政策声明问题
本文同步自javaexception 问题: 在我们的app上架到google play后,为了赚点小钱,就集成google ads,然而这会引发一个新的问题,那就是设置隐私政策声明的问题,通常我们会 ...
- 写个重新加载 ocelot 配置的接口
写个重新加载 ocelot 配置的接口 Intro 我们想把 ocelot 的配置放在自己的存储中,放在 Redis 或者数据库中,当修改了 Ocelot 的配置之后希望即时生效,又不想在网关这边定时 ...
- Mysql 字符串分隔函数
/*** 字符串分隔方法* 获取字符串分隔之后的数组长度*/DROP FUNCTION IF EXISTS `func_get_split_total`;DELIMITER ;;CREATE FUNC ...
- SQL2005打SP4补丁报错:无法安装Windows Installer MSP文件解决方案
错误如图: 解决方案分享如下: 第一步:卸载下图红框圈住的玩艺. 第二步:把SP4补丁文件解压,找到下图红框圈住的玩艺: 第三步:重新运行SP4补丁安装文件,安装正常.
- 设置Mac 终端走代理
1.打开终端执行:export http_proxy=socks5://127.0.0.1:1080 这个只能在当前终端执行一次退出后就需要重新设置 如果需要开机自动设置,把上面的代码加到~/.bas ...
- falkonry
falkonry.com/ 2019 Top 100 AI companies in the world
- Linux2:Linux目录结构
Linux目录图 进入根目录,使用ll命令看一下Linux整个根目录图: 这里面所有的目录都是买完服务器之后最初始的目录,没有进过任何加工.Linux以树的结构组织所有目录,用一张图表示一下Linux ...