POJ1743 Musical Theme(二分+后缀数组)
题目大概是给n个数组成的串,求是否有多个“相似”且不重叠的子串的长度大于等于5,两个子串相似当且仅当长度相等且每一位的数字差都相等。
这题是传说中楼教主男人八题之一,虽然已经是用后缀数组解决不可重叠最长重复子串的经典题了。。但其实没那么简单,题目数据不强,网上一些代码都是不正确的。
- 首先把问题转化成重复子串的问题:把原串每一位都与前一位相减。这样得出的新串如果有两个长度为n的子串相同,那么它们对应在原串的长度n+1的子串也就相似。
- 所以接下来要求的就是这个新串不可“重叠”最长重复子串——问题就在这儿,这不只是要求不可重叠,还要求两个子串要隔至少一个位置,因为如果两个子串靠在一起这样反应到原串那两个子串各自的首尾是重合的。
比如数据:9 1 1 1 1 1 1 1 1 1
隔至少一个位置其实只要原本的if(mx-mm>=k)改成if(mx-mm>k)就行了。
最后大概描述一下不可重叠最长重复子串的解法:
- O(logn)二分枚举子串长度,判断解是否成立
- O(n)判断长度是否成立:把互相之间LCP大于等于长度的分为一组,这通过个扫一遍height即可,因为后缀是有序的,相邻的后缀间的LCP必定的极大的;接下来就找到每个组里后缀sa值最大和最小的,如果差值大于(等于)k就成立,因为这样小下标的后缀沿着LCP下去走k步才不会盖到大下标的后缀。
另外,说一下二分枚举解,二分具体写法很多吧,也不知道正不正确。。我那样的写法我发现:
- 如果是求最小解,mid要取floor,即mid=(left+right)/2
- 如果是求最大解,mid要取ceil,即mid=(left+right+1)/2
看起来好像是这个样子的。。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 22222
#define INF (1<<30)
int wa[MAXN],wb[MAXN],wv[MAXN],ws[MAXN];
int cmp(int *r,int a,int b,int l){
return r[a]==r[b] && r[a+l]==r[b+l];
}
int sa[MAXN],rank[MAXN],height[MAXN];
void SA(int *r,int n,int m){
int *x=wa,*y=wb; for(int i=; i<m; ++i) ws[i]=;
for(int i=; i<n; ++i) ++ws[x[i]=r[i]];
for(int i=; i<m; ++i) ws[i]+=ws[i-];
for(int i=n-; i>=; --i) sa[--ws[x[i]]]=i; int p=;
for(int j=; p<n; j<<=,m=p){
p=;
for(int i=n-j; i<n; ++i) y[p++]=i;
for(int i=; i<n; ++i) if(sa[i]>=j) y[p++]=sa[i]-j;
for(int i=; i<n; ++i) wv[i]=x[y[i]];
for(int i=; i<m; ++i) ws[i]=;
for(int i=; i<n; ++i) ++ws[wv[i]];
for(int i=; i<m; ++i) ws[i]+=ws[i-];
for(int i=n-; i>=; --i) sa[--ws[wv[i]]]=y[i];
swap(x,y); x[sa[]]=; p=;
for(int i=; i<n; ++i) x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
} for(int i=; i<n; ++i) rank[sa[i]]=i;
int k=;
for(int i=; i<n-; height[rank[i++]]=k){
if(k) --k;
for(int j=sa[rank[i]-]; r[i+k]==r[j+k]; ++k);
}
} int n,a[MAXN],r[MAXN];
bool isok(int k){
bool flag=;
int mx=-INF,mm=INF;
for(int i=; i<=n; ++i){
if(height[i]>=k){
mm=min(mm,min(sa[i],sa[i-]));
mx=max(mx,max(sa[i],sa[i-]));
if(mx-mm>k) return ;
}else{
mx=-INF,mm=INF;
}
}
return ;
}
int main(){
while(~scanf("%d",&n) && n){
for(int i=; i<n; ++i) scanf("%d",a+i);
--n;
for(int i=; i<n; ++i) r[i]=a[i+]-a[i]+;
r[n]=;
SA(r,n+,);
int l=,r=n>>;
while(l<r){
int mid=l+r+>>;
if(isok(mid)) l=mid;
else r=mid-;
}
if(l>=) printf("%d\n",l+);
else printf("%d\n",);
}
return ;
}
POJ1743 Musical Theme(二分+后缀数组)的更多相关文章
- POJ-1743 Musical Theme,后缀数组+二分!
Musical Theme 人生第一道后缀数组的题,采用大众化思想姿势极其猥琐. 题意:给你n个 ...
- poj1743 Musical Theme【后缀数组】【二分】
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 35044 Accepted: 11628 D ...
- POJ1743 Musical Theme (后缀数组 & 后缀自动机)最大不重叠相似子串
A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the ...
- POJ 1743 Musical Theme 二分+后缀数组
Musical Theme Description A musical melody is represented as a sequence of N (1<=N<=20000)no ...
- poj1743 Musical Theme(后缀数组|后缀自动机)
[题目链接] http://poj.org/problem?id=1743 [题意] 求不可重叠最长重复子串. 2015-11-27 [思路] 1) 据题意处理字符串 ...
- 【POJ1743】Musical Theme(后缀数组)
[POJ1743]Musical Theme(后缀数组) 题面 洛谷,这题是弱化版的,\(O(n^2)dp\)能过 hihoCoder 有一点点区别 POJ 多组数据 题解 要求的是最长不可重叠重复子 ...
- POJ 1743 Musical Theme(后缀数组+二分答案)
[题目链接] http://poj.org/problem?id=1743 [题目大意] 给出一首曲子的曲谱,上面的音符用不大于88的数字表示, 现在请你确定它主旋律的长度,主旋律指的是出现超过一次, ...
- POJ 1743 Musical Theme (后缀数组,求最长不重叠重复子串)(转)
永恒的大牛,kuangbin,膜拜一下,Orz 链接:http://www.cnblogs.com/kuangbin/archive/2013/04/23/3039313.html Musical T ...
- POJ 1743 Musical Theme 【后缀数组 最长不重叠子串】
题目冲鸭:http://poj.org/problem?id=1743 Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Su ...
- P2743(poj1743) Musical Themes[差分+后缀数组]
P2743 乐曲主题Musical Themes(poj1743) 然后呢这题思路其实还是蛮简单的,只是细节特别多比较恶心,忘记了差分带来的若干疏漏.因为转调的话要保证找到相同主题,只要保证一段内相对 ...
随机推荐
- Beta 第四天
今天遇到的困难: 百度位置假死的问题研究发现并不是源于代码的问题,而是直接运行在主线程中会出现诸多问题 Fragment碎片刷新时总产生的固定位置的问题未果 今天完成的任务: 陈甘霖:修复了部分Bug ...
- 【Alpha版本】冲刺阶段 - Day1 - 启航
Alpha 阶段成员分工及任务量 成员 分工 任务量(小时) 袁逸灏 完成app用户车辆,子弹发射,背景移动,暂停界面,音乐界面,音乐查找,音乐播放 25 刘伟康 项目进度把控.分配任务.组织会议.整 ...
- 《高级软件测试》11.14.安装和运行Jira
今日任务完成情况如下: 小段:研究Jira在Linux的安装教程 小费:尝试在Ubuntu下安装Jira 小高:查阅了关于Jira软件的介绍和安装教程,下载准备明天安装,并学习使用 小王:注册Jira ...
- react中的DOM操作
前面的话 某些情况下需要在典型数据流外强制修改子代.要修改的子代可以是 React 组件实例,也可以是 DOM 元素.这时就要用到refs来操作DOM 使用场景 下面是几个适合使用 refs 的情况 ...
- JAVA_SE基础——19.数组的定义
数组是一组相关数据的集合,数组按照使用可以分为一维数组.二维数组.多维数组 本章先讲一维数组 不同点: 不使用数组定义100个整形变量:int1,int2,int3;;;;;; 使用数组定义 int ...
- python虚拟环境搭建大全(转)
Pipenv & 虚拟环境 本教程将引导您完成安装和使用 Python 包. 它将向您展示如何安装和使用必要的工具,并就最佳做法做出强烈推荐.请记住, Python 用于许多不同的目的.准确地 ...
- Python之旅.第三章.函数3.29
一.无参装饰器 1 开放封闭原则 软件一旦上线后,就应该遵循开放封闭原则,即对修改源代码是封闭的,对功能的扩展是开放的 也就是说我们必须找到一种解决方案: 能够在不修改一个功能源代码以及调用方式的前提 ...
- HttpClient 上传多个文件
using (System.Net.Http.HttpClient client = new System.Net.Http.HttpClient()) { client.BaseAddress = ...
- WebApi 接口返回值类型详解 ( 转 )
使用过Webapi的园友应该都知道,Webapi的接口返回值主要有四种类型 void无返回值 IHttpActionResult HttpResponseMessage 自定义类型 此篇就围绕这四块分 ...
- Python内置函数(34)——map
英文文档: map(function, iterable, ...) Return an iterator that applies function to every item of iterabl ...