原题链接 https://www.luogu.org/problemnew/show/P1744

一道最短路的模板题.....很简单吧

求最短路的方法有很多,但是对于刚学完Floyd的我,只会用这个.......虽然有点慢,但是也能AC

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

2.算法描述

算法思想原理:

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

我们可以开一个n*n的邻接矩阵,记录联通情况:f[i][j]如果为1,则说明i到j联通;如果为∞,则说明不连通(之所以用∞的原因是比较的时候无穷大一定比任何除无穷大以外的数的和都大,这样就不会把∞算进去),然后可以进一步将f[i][j]=1的地方利用两点间距离公式将1换成具体的距离

代码如下:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int n,m,x,y,a[][],aa,bb; //a数组存放坐标
double b[][]; //b数组存放最短路,注意double类型
int main()
{
cin>>n; //n个点
for(int i=;i<=n;i++)
cin>>a[i][]>>a[i][]; //横纵坐标
cin>>m; //m处联通
memset(b,0x7f,sizeof(b)); //先将全部的元素赋为无穷大
for(int i=;i<=m;i++)
{
cin>>x>>y; //点x与点y是联通的
b[x][y]=b[y][x]=sqrt(pow((double)(a[x][]-a[y][]),)+pow((double)(a[x][]-a[y][]),));
//利用邻接矩阵的对称性减少一半运算,两点间距离公式算距离,注意改成double类型
}
for(int k=;k<=n;k++) //Floyd算法,O(n^3)复杂度
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(i!=j&&i!=k&&j!=k&&((b[i][k]+b[k][j])<b[i][j])) b[i][j]=b[i][k]+b[k][j];
//如果第i点和第j点间有个间接点k使得第i个点到第k个点的距离+k个点到第j个点的距离<小于第i个点到第j个点的直接距离,则将最短距离更新
cin>>aa>>bb; //题目要求的第aa个点到第bb个点的矩阵
printf("%.2lf",b[aa][bb]); //直接输出
return ;
}

完结撒花qaq~

P1744 采购特价商品的更多相关文章

  1. P1744 采购特价商品 最短路径

    P1744 采购特价商品 图论-----最短路径算法 弗洛伊德算法  O(n^3) 代码: #include<iostream> #include<cstdio> #inclu ...

  2. 洛谷——P1744 采购特价商品

    P1744 采购特价商品 题目背景 <爱与愁的故事第三弹·shopping>第一章. 题目描述 中山路店山店海,成了购物狂爱与愁大神的“不归之路”.中山路上有n(n<=100)家店, ...

  3. P1744 采购特价商品 题解(讲解图论)

    图论的超级初级题目(模板题) 最短路径的模板题 图是啥?(白纸上的符号?) 对于一个拥有n个顶点的无向连通图,它的边数一定多于n-1条.若从中选择n-1条边,使得无向图仍然连通,则由n个顶点及这 n- ...

  4. luogu P1744 采购特价商品

    实话说我本来想找SPFA的题,结果我硬生生的把这道题做成了Floyd 先来看题,我们会发现如果把他所给的变量都输入,那么会发现用Floyd的解法,输入占了main函数的一半长度... 题目分为两步走: ...

  5. 洛谷 P1744 采购特价商品

    题目背景 <爱与愁的故事第三弹·shopping>第一章. 题目描述 中山路店山店海,成了购物狂爱与愁大神的“不归之路”.中山路上有n(n<=100)家店,每家店的坐标均在-1000 ...

  6. 洛谷题解 P1744 【采购特价商品】

    原题传送门 题目描述 中山路店山店海,成了购物狂爱与愁大神的"不归之路".中山路上有n(n<=100)家店,每家店的坐标均在-10000~10000之间.其中的m家店之间有通 ...

  7. 图论++【洛谷p1744】特价采购商品&&【一本通1342】最短路径问题

    (虽然题面不是很一样,但是其实是一个题qwq) [传送门] 算法标签: 利用Floyed的o(n3)算法: (讲白了就是暴算qwq) 从任意一条单边路径开始.所有两点之间的距离是边的权,或者无穷大,如 ...

  8. Floyd-蒟蒻也能看懂的弗洛伊德算法(当然我是蒟蒻)

    今天来讲点图论的知识,来看看最短路径的一个求法(所有的求法我以后会写,也有可能咕咕咕) 你们都说图看着没意思不好看,那今天就来点情景             暑假,_GC准备去一些城市旅游.有些城市之 ...

  9. Floyed-Warshall【弗洛伊德算法】

    首先介绍一下有关最短路径的知识 从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径.解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算 ...

随机推荐

  1. C# Lambda表达式和linq表达式 之 匿名对象查询接收

    很多小伙伴都用过Lambda表达式和linq表达式,用起来也得心应手,但是有的小伙伴 对匿名对象的查询与接收比较迷茫,(没有定义相应的实体),怎么在where()里面进行 条件筛选呢?常规用法我就不说 ...

  2. .NET Core:API文档

    安装:Swashbuckle.AspNetCore 启用 XML 注释:右键单击“解决方案资源管理器”中的项目,然后选择“属性”.勾选“生成”选项卡的“输出”部分下的“XML 文档文件”框. 将 Sw ...

  3. revit二次开发wpf里button按钮无法实现事务

    不能在revit提供的api外部使用事务,解决此方法, 1.把button里要实现的功能写到外部事件IExternalEventHandler中,注册外部事件,在button事件中.raise()使用 ...

  4. js或jquery实现点击某个按钮或元素显示div,点击页面其他任何地方隐藏div

    点击某个元素显示div,点击页面其他任何地方隐藏div,可用javascript和jquery两种方法实现: 一:javascript实现方法技巧<script>//定义stopPropa ...

  5. Springboot整合activemq

    今天呢心血来潮,也有很多以前的学弟问到我关于消息队列的一些问题,有个刚入门,有的有问题都来问我,那么今天来说说如何快速入门mq. 一.首先说下什么是消息队列? 1.消息队列是在消息的传输过程中保存消息 ...

  6. Java多线程知识整理

    多线程 1. 多线程基础 多线程状态转换图 普通方法介绍 yeild yeild,线程让步.是当前线程执行完后所有线程又统一回到同一起跑线.让自己或者其他线程运行,并不是单纯的让给其他线程. join ...

  7. MySQL 字符集和校对

    字符集是指一种从二进制编码到某类字符符号的映射,校对是一组用于某个字符集的排序规则.每一类编码字符都有其对应的字符集和校对规则 MySQL 如何使用字符集 每种字符集都可能有多种校对规则,并且都有一个 ...

  8. 折腾Java设计模式之访问者模式

    博客原文地址:折腾Java设计模式之访问者模式 访问者模式 Represent an operation to be performed on the elements of an object st ...

  9. 关于elementui表单数字校验踩坑记

    需求:1.输入类型是数字.2.数字大小有限制.3.非必填 做法: <el-form-item label="熟悉程度" prop="averageCaseRunTi ...

  10. Java thrift服务器和客户端创建实例

    首先环境介绍一下: 1.IntelliJ IDEA 2017.1 2.thrift-0.9.3 相信大家在看我这篇文章的时候已经对thrift通信框架已有所调研,这里就不再赘述了,直接进入正题: &l ...