【AGC030D】Inversion Sum DP
题目大意
有一个序列 \(a_1,a_2,\ldots,a_n\),有 \(q\) 次操作,每次操作给你两个数 \(x,y\),你可以交换 \(a_x,a_y\),或者什么都不做。
问你所有 \(2^q\) 种情况中逆序对的个数之和。
\(n,q\leq 3000\)
题解
考虑对于每一对 \(i,j\),计算 \(q\) 次操作后 \(a_i\) 和 \(a_j\) 的大小关系。
记 \(f_{i,j,k}\) 为操作 \(i\) 次后,\(a_j,a_k\) 这对数中较小的在 \(j\),较大的在 \(k\) 的概率。
每次操作只会修改 \(O(n)\) 个位置的DP值。
时间复杂度:\(O(n^2+qn)\)
题解
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<functional>
#include<cmath>
#include<vector>
#include<assert.h>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const int N=3010;
const ll p=1000000007;
ll fp(ll a,ll b)
{
ll s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
const ll inv2=fp(2,p-2);
int a[N];
int n,q;
ll f[N][N];
int main()
{
open2("d");
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i]<a[j])
f[i][j]=1;
int x,y;
for(int i=1;i<=q;i++)
{
scanf("%d%d",&x,&y);
f[x][y]=f[y][x]=(f[x][y]+f[y][x])*inv2%p;
for(int j=1;j<=n;j++)
if(j!=x&&j!=y)
{
f[x][j]=f[y][j]=(f[x][j]+f[y][j])*inv2%p;
f[j][x]=f[j][y]=(f[j][x]+f[j][y])*inv2%p;
}
}
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<i;j++)
ans=(ans+f[i][j])%p;
ans=ans*fp(2,q)%p;
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return 0;
}
【AGC030D】Inversion Sum DP的更多相关文章
- 【题解】POJ1934 Trip (DP+记录方案)
[题解]POJ1934 Trip (DP+记录方案) 题意: 传送门 刚开始我是这么设状态的(谁叫我DP没学好) \(dp(i,j)\)表示钦定选择\(i\)和\(j\)的LCS,然而你会发现这样钦定 ...
- 【题解】剪纸条(dp)
[题解]剪纸条(dp) HRBUST - 1828 网上搜不到题解?那我就来写一篇吧哈哈哈 最优化问题先考虑\(dp\),设\(dp(i)\)表示将前\(i\)个字符(包括\(i\))分割成不相交的回 ...
- 【题解】地精部落(DP)
[题解]地精部落(DP) 设\(f_i\)表示强制第一个是谷的合法方案数 转移枚举一个排列的最大值在哪里,就把序列分成了互不相干的两个部分,把其中\(i-1\choose j-1\)的数字分配给前面部 ...
- 「AGC030D」Inversion Sum
「AGC030D」Inversion Sum 传送门 妙啊. 由于逆序对的个数最多只有 \(O(n^2)\) 对,而对于每一个询问与其相关的逆序对数也最多只有 \(O(n)\) 对,我们可以对于每一对 ...
- 【LeetCode】129. Sum Root to Leaf Numbers 解题报告(Python)
[LeetCode]129. Sum Root to Leaf Numbers 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/pr ...
- 【CF944G】Coins Exhibition DP+队列
[CF944G]Coins Exhibition 题意:Jack去年参加了一个珍稀硬币的展览会.Jack记得一共有 $k$ 枚硬币,这些硬币排成一行,从左到右标号为 $1$ 到 $k$ ,每枚硬币是正 ...
- 【CF886E】Maximum Element DP
[CF886E]Maximum Element 题意:小P有一个1-n的序列,他想找到整个序列中最大值的出现位置,但是他觉得O(n)扫一遍太慢了,所以它采用了如下方法: 1.逐个遍历每个元素,如果这个 ...
- 【专题】概率期望DP
11.22:保持更新状态:主要发一些相关的题目和个人理解 (P.S.如果觉得简单,可以直接看后面的题目) upd 11.30 更完了 [NO.1] UVA12230 Crossing Rivers ...
- 【BZOJ-1068】压缩 区间DP
1068: [SCOI2007]压缩 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1001 Solved: 615[Submit][Status][ ...
随机推荐
- SVN安装和使用(简单版)
为什么使用SVN? 通常软件的开发需要团队协作开发,每个人负责一个方面,都做完后需要把每个人的代码整合在一起,而每个人的代码方面不同或版本不同就会拖延开发进度对开发项目造成麻烦,如果一个人需要另一个人 ...
- 基于IIS的WCF
(1)创建WCF服务应用程序 (2)配置IIS 将WCF服务应用程序配置IIS网站,需要使用.net4.0集成版本的程序池 (3)使用SvcUtil.exe生成客户端代码和配置 SvcUtil.exe ...
- SpringAOP(5)
2019-03-08/14:22:58 演示:登陆核心业务类与日志周边功能实现AOP面向切面思想 jar包:https://share.weiyun.com/5GOFouP 学习资料:http://h ...
- vue+原生JavaScript实现slideDown与slideUp[简单思路]
整个代码如下: <template> <div style="width:400px;margin:100px auto;"> <div class= ...
- Android SingleTask使用注意点
在ActivityA中,startActivityForResult到ActivityB,其中ActivityB设置为SingleTask. 那么在实际出现的现象为: ActivityA的onActi ...
- findlibrary returned null
转载请标明出处,维权必究:https://www.cnblogs.com/tangZH/p/10181330.html 该错误是在加载so库的时候出现的,就是找不到so库. 一.检查jinLibs目录 ...
- MySQL随笔(2)
索引本身是一个独立的存储单位,在该单位里边有记录着数据表某个字段和字段对应的物理空间.索引内部有算法支持,可以说查询速度非常快. 聚簇索引;聚簇索引不是单独的索引而是一种数据存储方式;聚簇索引的优点是 ...
- DES加密算法应用:分组加密模式
通常,大多数的分组加密算法都是把数据按照64位分组的方式进行加密和解密.但是几乎所有的加密工作所涉及的数据量都远远大于64位,因此就需要不断地重复加密过程,直到处理完所有的分组.这种分组加密中所涉及的 ...
- SpringBoot文档
一.Spring Boot 入门 1.Hello World探究 1.POM文件 1.父项目 <parent> <groupId>org.springframework.b ...
- 一键安装Cloud Torrent
wget -N --no-check-certificate https://raw.githubusercontent.com/ToyoDAdoubi/doubi/master/cloudt.sh ...