BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

Description

Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.

给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。

Input

 Line 1: The integer N. 
 Lines 2..1+N: Line i+1 contains M(i).

Output

* Line 1: The number of balanced subsets of cows.

Sample Input

4 1 2 3 4
INPUT DETAILS: There are 4 cows, with milk outputs 1, 2, 3, and 4.

Sample Output

3


首先每个数的系数只可能是0,1,-1,并且1和-1都是选的状态。

用meet in middle的思想,$3^{n/2}$枚举左边和右边,把左边选或不选的状态与和挂链,右边按和排序。

枚举左边的状态,再枚举右边的和,枚举过程中左边指针单调。

然后统计答案即可。

复杂度$O(6^{n/2})$。

代码:

// luogu-judger-enable-o2
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mr(x,y) make_pair(x,y)
#define N 100050
#define RR register
#define O2 __attribute__((optimize("-O2")))
typedef long long ll;
int n,a[25],m;
int ans;
int head[N],to[N],nxt[N],cnt,tot,t[N],vis[1<<22];
O2 struct A {
int v,S;
bool operator < (const A &x) const {
return v<x.v;
}
}b[N];
O2 inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
O2 void dfs(int dep,int sum,int sta) {
if(dep==m+1) {
add(sta,sum); return ;
}
dfs(dep+1,sum,sta);
dfs(dep+1,sum+a[dep],sta|(1<<(dep-1)));
dfs(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 void solve(int dep,int sum,int sta) {
if(dep==n+1) {
b[++tot].v=sum; b[tot].S=sta;
return ;
}
solve(dep+1,sum,sta);
solve(dep+1,sum+a[dep],sta|(1<<(dep-1)));
solve(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 int main() {
scanf("%d",&n);
m=n/2;
RR int i,j;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
dfs(1,0,0);
solve(m+1,0,0);
sort(b+1,b+tot+1);
for(i=0;i<(1<<m);i++) {
t[0]=0;
for(j=head[i];j;j=nxt[j]) {
t[++t[0]]=to[j];
}
sort(t+1,t+t[0]+1);
RR int l=1,r=1;
/*for(l=1;l<=t[0];l++) {
while(r<=tot&&b[r].v<t[l]) r++;
if(r==tot+1) break;
if(b[r].v==t[l]) {
vis[i|(b[r].S)]++;
//if(vis[i|b[r].S]==1) ans++;
}
}*/
for(l=1;l<=tot;l++) {
while(r<=t[0]&&t[r]<b[l].v) r++;
if(r==t[0]+1) break;
if(t[r]==b[l].v) {
vis[i|(b[l].S)]++;
if(vis[i|(b[l].S)]==1) ans++;
}
}
}
printf("%d\n",ans-1);
}

BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针的更多相关文章

  1. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  2. bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)

    2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 462  Solv ...

  3. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  4. [Usaco2012 Open]Balanced Cow Subsets

    Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...

  5. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  6. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  7. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

  8. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

  9. SPOJ-SUBSET Balanced Cow Subsets

    嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...

随机推荐

  1. 服务端搭建——腾讯云通信(IM)

    前言 在手机app中因为需要即时聊天功能,在项目采用腾讯云通信服务.如下流程图: 当手机端拿到签名后,就可登录IM,使用im提供的sdk收发信息. 准备工作 1.在腾讯云注册获取appid 2.申请开 ...

  2. java原子操作

    一.何谓Atomic? Atomic一词跟原子有点关系,后者曾被人认为是最小物质的单位.计算机中的Atomic是指不能分割成若干部分的意思.如果一段代码被认为是Atomic,则表示这段代码在执行过程中 ...

  3. MySQL/MariaDB中的事务和事务隔离级别

    本文目录:1.事务特性2.事务分类 2.1 扁平事务 2.2 带保存点的扁平事务 2.3 链式事务 2.4 嵌套事务 2.5 分布式事务3.事务控制语句4.显式事务的次数统计5.一致性非锁定读(快照查 ...

  4. python22期第一天(课程总结)

    1.Python介绍: python是一门高级编程语言,涉及领域比较广泛,社区活跃,由一个核心开发团队在维护,相对其他语言,易于学习,可移植性强,可扩展性强,易于维护,有大量的标准库可供使用. 2.P ...

  5. Android Studio 插件开发详解四:填坑

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/78265540 本文出自[赵彦军的博客] 在前面我介绍了插件开发的基本流程 [And ...

  6. Nodejs http-proxy代理实战应用

    var https = require('https'); var express = require('express'); var app = express() var http = requi ...

  7. JSF-受管Bean与EL表达式

    受管Bean与EL表达式 1)编写Bean:①有一个不带形参的构造方法 ②getXxx.setXxx ③一般要实现io.Serializable接口 2)声明受管Bean:①bean名称为外界访问其属 ...

  8. Python杂记

    一.函数 1.numpy 模块中的nonzero函数 nonzero返回的数非零元素的下标. 如果输入是单维度的时候它的返回值只有一个:如果输入是多个维度的话,那么它的返回值也是多个维度的.并且的它的 ...

  9. html5 标签在 IE 下使用

    (function(){if(!/*@cc_on!@*/0)return;var e = "abbr,article,aside,audio,bb,canvas,datagrid,datal ...

  10. LeetCode_图像渲染

    题目: 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. 给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 ne ...