BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

Description

Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.

给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。

Input

 Line 1: The integer N. 
 Lines 2..1+N: Line i+1 contains M(i).

Output

* Line 1: The number of balanced subsets of cows.

Sample Input

4 1 2 3 4
INPUT DETAILS: There are 4 cows, with milk outputs 1, 2, 3, and 4.

Sample Output

3


首先每个数的系数只可能是0,1,-1,并且1和-1都是选的状态。

用meet in middle的思想,$3^{n/2}$枚举左边和右边,把左边选或不选的状态与和挂链,右边按和排序。

枚举左边的状态,再枚举右边的和,枚举过程中左边指针单调。

然后统计答案即可。

复杂度$O(6^{n/2})$。

代码:

// luogu-judger-enable-o2
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mr(x,y) make_pair(x,y)
#define N 100050
#define RR register
#define O2 __attribute__((optimize("-O2")))
typedef long long ll;
int n,a[25],m;
int ans;
int head[N],to[N],nxt[N],cnt,tot,t[N],vis[1<<22];
O2 struct A {
int v,S;
bool operator < (const A &x) const {
return v<x.v;
}
}b[N];
O2 inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
O2 void dfs(int dep,int sum,int sta) {
if(dep==m+1) {
add(sta,sum); return ;
}
dfs(dep+1,sum,sta);
dfs(dep+1,sum+a[dep],sta|(1<<(dep-1)));
dfs(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 void solve(int dep,int sum,int sta) {
if(dep==n+1) {
b[++tot].v=sum; b[tot].S=sta;
return ;
}
solve(dep+1,sum,sta);
solve(dep+1,sum+a[dep],sta|(1<<(dep-1)));
solve(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 int main() {
scanf("%d",&n);
m=n/2;
RR int i,j;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
dfs(1,0,0);
solve(m+1,0,0);
sort(b+1,b+tot+1);
for(i=0;i<(1<<m);i++) {
t[0]=0;
for(j=head[i];j;j=nxt[j]) {
t[++t[0]]=to[j];
}
sort(t+1,t+t[0]+1);
RR int l=1,r=1;
/*for(l=1;l<=t[0];l++) {
while(r<=tot&&b[r].v<t[l]) r++;
if(r==tot+1) break;
if(b[r].v==t[l]) {
vis[i|(b[r].S)]++;
//if(vis[i|b[r].S]==1) ans++;
}
}*/
for(l=1;l<=tot;l++) {
while(r<=t[0]&&t[r]<b[l].v) r++;
if(r==t[0]+1) break;
if(t[r]==b[l].v) {
vis[i|(b[l].S)]++;
if(vis[i|(b[l].S)]==1) ans++;
}
}
}
printf("%d\n",ans-1);
}

BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针的更多相关文章

  1. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  2. bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)

    2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 462  Solv ...

  3. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  4. [Usaco2012 Open]Balanced Cow Subsets

    Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...

  5. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  6. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  7. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

  8. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

  9. SPOJ-SUBSET Balanced Cow Subsets

    嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...

随机推荐

  1. Jquery Easing函数库

    从jQuery API 文档中可以知道,jQuery自定义动画的函数.animate( properties [, duration] [, easing] [, complete] )有四个参数: ...

  2. 技术大牛是如何拿到国内IT巨头offer的?

    关键字:技术大牛是如何拿到国内IT巨头offer的?  不是技术牛人,如何拿到国内IT巨头的Offer  不久前,byvoid面阿里星计划的面试结果截图泄漏,引起无数IT屌丝的羡慕敬仰.看看这些牛人, ...

  3. 几大时尚前端UI框架的IE支持

    这个文章的Topic比较符合我们这些身在Stone Age用户环境中的开发者所考虑的因素 1.先说目前最火最酷的:Semantic-UI 目前版本:0.17.0 Browser Support Las ...

  4. 实验6 shell程序设计一(1)

    设计如下一个菜单驱动程序 Use one of the following options: P:To display current directory S:To display the name ...

  5. 转载 Elasticsearch开发环境搭建(Eclipse\MyEclipse + Maven)

    概要: 1.使用Eclipse搭建Elasticsearch详情参考下面链接 2.Java Elasticsearch 配置 3.ElasticSearch Java Api(一) -添加数据创建索引 ...

  6. MySQL数据库主从分离的配置方法

    1.介绍 MySQL数据库设置读写分离,可以使对数据库的写操作和读操作在不同服务器上执行,提高并发量和响应速度.现在的网站一般大点的,都采用有数据库主从分离.读写分离,既起到备份作用也可以减轻数据库的 ...

  7. Scrapy爬虫框架第三讲(linux环境)

    下面我们来学习下Spider的具体使用: 我们已上节的百度阅读爬虫为例来进行分析: 1 # -*- coding: utf-8 -*- 2 import scrapy 3 from scrapy.li ...

  8. 1、学习笔记之——html

    这篇学习笔记是在看一些教学视频学习时所记,可能比较乱,就当是自己以后复习的资料好了. <!doctype html> <html> <head> <meta ...

  9. 【问题】sql数据库报无效的数据证书,需重新安装

    事情的经过: 今天打开sql2014数据库,没有成功运行,但是给我弹出一个"无效的数据证书,需要重新安装!"提示.什么情况.为什么,应该是前一天弄vs导致的.因为升级了vs2017 ...

  10. JAVA中写时复制(Copy-On-Write)Map实现

    1,什么是写时复制(Copy-On-Write)容器? 写时复制是指:在并发访问的情景下,当需要修改JAVA中Containers的元素时,不直接修改该容器,而是先复制一份副本,在副本上进行修改.修改 ...