BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针
BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针
Description
给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。
Input
Output
Sample Input
INPUT DETAILS: There are 4 cows, with milk outputs 1, 2, 3, and 4.
Sample Output
3
首先每个数的系数只可能是0,1,-1,并且1和-1都是选的状态。
用meet in middle的思想,$3^{n/2}$枚举左边和右边,把左边选或不选的状态与和挂链,右边按和排序。
枚举左边的状态,再枚举右边的和,枚举过程中左边指针单调。
然后统计答案即可。
复杂度$O(6^{n/2})$。
代码:
// luogu-judger-enable-o2
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mr(x,y) make_pair(x,y)
#define N 100050
#define RR register
#define O2 __attribute__((optimize("-O2")))
typedef long long ll;
int n,a[25],m;
int ans;
int head[N],to[N],nxt[N],cnt,tot,t[N],vis[1<<22];
O2 struct A {
int v,S;
bool operator < (const A &x) const {
return v<x.v;
}
}b[N];
O2 inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
O2 void dfs(int dep,int sum,int sta) {
if(dep==m+1) {
add(sta,sum); return ;
}
dfs(dep+1,sum,sta);
dfs(dep+1,sum+a[dep],sta|(1<<(dep-1)));
dfs(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 void solve(int dep,int sum,int sta) {
if(dep==n+1) {
b[++tot].v=sum; b[tot].S=sta;
return ;
}
solve(dep+1,sum,sta);
solve(dep+1,sum+a[dep],sta|(1<<(dep-1)));
solve(dep+1,sum-a[dep],sta|(1<<(dep-1)));
}
O2 int main() {
scanf("%d",&n);
m=n/2;
RR int i,j;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
dfs(1,0,0);
solve(m+1,0,0);
sort(b+1,b+tot+1);
for(i=0;i<(1<<m);i++) {
t[0]=0;
for(j=head[i];j;j=nxt[j]) {
t[++t[0]]=to[j];
}
sort(t+1,t+t[0]+1);
RR int l=1,r=1;
/*for(l=1;l<=t[0];l++) {
while(r<=tot&&b[r].v<t[l]) r++;
if(r==tot+1) break;
if(b[r].v==t[l]) {
vis[i|(b[r].S)]++;
//if(vis[i|b[r].S]==1) ans++;
}
}*/
for(l=1;l<=tot;l++) {
while(r<=t[0]&&t[r]<b[l].v) r++;
if(r==t[0]+1) break;
if(t[r]==b[l].v) {
vis[i|(b[l].S)]++;
if(vis[i|(b[l].S)]==1) ans++;
}
}
}
printf("%d\n",ans-1);
}
BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针的更多相关文章
- 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)
[Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...
- bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)
2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 462 Solv ...
- 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469
题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...
- [Usaco2012 Open]Balanced Cow Subsets
Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...
- BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets
考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...
- bzoj2679:[Usaco2012 Open]Balanced Cow Subsets
思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...
- 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets
[算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...
- BZOJ.2679.Balanced Cow Subsets(meet in the middle)
BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...
- SPOJ-SUBSET Balanced Cow Subsets
嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...
随机推荐
- 服务端搭建——腾讯云通信(IM)
前言 在手机app中因为需要即时聊天功能,在项目采用腾讯云通信服务.如下流程图: 当手机端拿到签名后,就可登录IM,使用im提供的sdk收发信息. 准备工作 1.在腾讯云注册获取appid 2.申请开 ...
- java原子操作
一.何谓Atomic? Atomic一词跟原子有点关系,后者曾被人认为是最小物质的单位.计算机中的Atomic是指不能分割成若干部分的意思.如果一段代码被认为是Atomic,则表示这段代码在执行过程中 ...
- MySQL/MariaDB中的事务和事务隔离级别
本文目录:1.事务特性2.事务分类 2.1 扁平事务 2.2 带保存点的扁平事务 2.3 链式事务 2.4 嵌套事务 2.5 分布式事务3.事务控制语句4.显式事务的次数统计5.一致性非锁定读(快照查 ...
- python22期第一天(课程总结)
1.Python介绍: python是一门高级编程语言,涉及领域比较广泛,社区活跃,由一个核心开发团队在维护,相对其他语言,易于学习,可移植性强,可扩展性强,易于维护,有大量的标准库可供使用. 2.P ...
- Android Studio 插件开发详解四:填坑
转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/78265540 本文出自[赵彦军的博客] 在前面我介绍了插件开发的基本流程 [And ...
- Nodejs http-proxy代理实战应用
var https = require('https'); var express = require('express'); var app = express() var http = requi ...
- JSF-受管Bean与EL表达式
受管Bean与EL表达式 1)编写Bean:①有一个不带形参的构造方法 ②getXxx.setXxx ③一般要实现io.Serializable接口 2)声明受管Bean:①bean名称为外界访问其属 ...
- Python杂记
一.函数 1.numpy 模块中的nonzero函数 nonzero返回的数非零元素的下标. 如果输入是单维度的时候它的返回值只有一个:如果输入是多个维度的话,那么它的返回值也是多个维度的.并且的它的 ...
- html5 标签在 IE 下使用
(function(){if(!/*@cc_on!@*/0)return;var e = "abbr,article,aside,audio,bb,canvas,datagrid,datal ...
- LeetCode_图像渲染
题目: 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间. 给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 ne ...