TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人
简介
TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人。
文章包括一下几个部分:
1.为什么要尝试做这个项目?
2.为什么选取了这个模型?
3.模型的数据从哪里来?
4.模型的优化过程?
5.项目可以进一步提升的方向。
对于以比特币为首的数字货币近期的表现,只能用疯狂来形容。来自比特币交易平台的最新价格行情显示,就在此前一天,比特币盘中最高价格达到29838.5元,距离3万元大关仅有咫尺之遥。比特币最近火热的行情,吸引了众多的关注,还有一个人工智能似乎无所不能,那么问题来了,能否用人工智能来进行比特币交易呢?
使用什么模型来进行价格预测?现在热门的 深度神经网络,卷积神经网络,循环神经网络,因为卷积神经网络更适合处理图片,循环神经网络比较适合处理序列化内容,尤其是 LSTM 是 RNN 的升级版。
LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。比特币的成交记录就是事件序列上的加个数据,可以基于过去的成交记录序列来对未来的价格作出预测,和 LSTM 的模型比较合适。接下来的价格可以作为预测结果。
数据集
新的问题来了,数据从哪里来?
需要的数据是一个包含成交价格的序列,然后可以截取一部分作为输入值,接下来的一部分作为预测值。后来找了一下,主流的交易平台都提供了部分历史数据,但都不是很多。最后采用了 btctrade ,用 requests 爬取,它包含比特币的 50 个交易记录。
获取数据集的脚本
get_trades.py 会获取这些交易记录,重新转化为 json ,并且用图片的方式展示出来,供下一步数据分析使用。
运行前需要安装的依赖:
为了爬取数据,需要使用 requests 库,一个非常好用的 HTTP 库。为了把交易的数据可视化,使用了 matplotlib。
pip install requests
pip install matplotlib
模型
rnn_predicter.py
使用 LSMT 模型。截取 10个交易记录作为输入,如果 第 11个价格比第10个高,就把输出设置为 [1,0,0],如果低就设置为 [0,0,1] ,如果相同 [0,1,0]。
for i in range(0,20):
#print(price)
one_predictor=np.array(price[i:i+20],dtype=float)
#print(one_predictor)
train_x.append(one_predictor)
if(int(price[i+20])>int(price[i+21])):
train_y.append(np.array([1,0,0]))
elif (int(price[i + 20]) == int(price[i + 21])):
train_y.append(np.array([0,1,0]))
elif(int(price[i+20])<int(price[i+21])):
train_y.append(np.array([0,0,1]))
下一步定义模型:
tensorflow lstm 模型,需要把 tensor 拆分成序列,然后传入模型。否则回报错,也就是代码中的 x = tf.unstack(x, n_steps, 1) 。
def RNN(x, weights, biases):
#首先把数据拆分为 n 个序列,每一个的维度 (batch_size, n_input)
x = tf.unstack(x, n_steps, 1)
# 定一个 lstm cell
lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
# 获得 lstm 的输出
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# 加个线性激活
return tf.matmul(outputs[-1], weights['out']) + biases['out']
获得结果,定义损失函数和优化函数
如何优化模型?
预测值获取之后,对比实际的价格,会有一个损失函数。损失函数使用 softmax_cross_entropy_with_logits 来计算预测值和标记值的差,然后用 AdamOptimizer 来优化损失函数优化模型。
pred = RNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
项目开源地址和训练结果
https://github.com/TensorFlowNews/TensorFlow-Bitcoin-Robot/
训练设备:
GeForce GTX 980 Ti
训练结果:
Iter 998000, Minibatch Loss= 0.730588, Training Accuracy= 0.75000 Optimization Finished!
后续更新发布
http://www.tensorflownews.com/
更新计划
因为交易平台提供的历史交易记录非常少,所以为了进一步提高训练效果,后续要持续的自己保存历史交易数据或者是找到更好的数据来源。还有一个方面是,模型训练完了之后,保存下来,后续可以直接使用。还有针对模型本身还可以做一定的优化,现在只是预测,涨,跌,维持,后续可以进行更加精细的评分,按照历史数据进行回测等等。
模型持久化,训练数据集持久化,测试数据集。
TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人的更多相关文章
- TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人。
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...
- ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]
ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...
- 使用TensorFlow动手实现一个Char-RNN
https://blog.csdn.net/thriving_fcl/article/details/72565455 前言 学习RNN的时候很多人应该都有看过Andrej Karpathy写的The ...
- 基于tensorflow 1.x 的检索机器人chatbot-retrieval
Chatbot-retrieval说基于tensorflow的检索机器人,原版的代码路径是 https://github.com/dennybritz/chatbot-retrieval, 但是在te ...
- 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文 ...
- 时间序列深度学习:状态 LSTM 模型预测太阳黑子
目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...
- 基于 Agent 的模型入门:Python 实现隔离仿真
2005 年诺贝尔经济学奖得主托马斯·谢林(Thomas Schelling)在上世纪 70 年代就纽约的人种居住分布得出了著名的 Schelling segregation model,这是一个 A ...
- 个基于TensorFlow的简单故事生成案例:带你了解LSTM
https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537 在深度学习中,循环神经网络( ...
- 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)
前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...
随机推荐
- EasyUI内容页Tabs。
html: <div data-options="region:'center'"> <div id="tabs" class="e ...
- php的开发的apache的配置及伪静态的应用
1.Apache之所以能够解析php代码是游览器首先发送数据到模版页面,然后模版页提交数据到php页面,然后php代码经过Apache解析过后生成结果的,所以是 在Apache的配置文件中是可以看到开 ...
- php网上支付易宝
巴巴运动网是通过易宝向招商银行打钱,这个首先易宝是需要审核巴巴运动网的钱来的是否正当不然易宝就成了一个洗钱的工具,这个是犯法的:因为钱的来路不明!财政部是需要抓起来的!所以钱的流向实际上是用户的招商银 ...
- Echarts 折线图y轴标签值太长时显示不全的解决办法
问题 分析 解决办法 问题 先看一下正常的情况 再看一下显示不全的情况 所有的数据都是从后台取的,也就是说动态变化的,一开始的时候数据量不大不会出现问题,后面y轴的值越来越大的时候就出现了这个显示不全 ...
- angular2 学习笔记 ( translate, i18n 翻译 )
更新 : 2017-06-17 <h1 i18n="site header|An introduction header for this sample">Hello ...
- java.lang.IllegalAccessError: tried to access method org.apache.poi.util.POILogger.log from class org.apache.poi.openxml4j.opc.ZipPackage
代码说简单也简单,说复杂那还真是寸步难行. 之前好好的excel导出功能,本地启动调试的时候突然就不行了,一直报上面的错. 一直在本地折腾了半天,去测试环境上看,又是好的,可以正常导出excel. 搜 ...
- 在GridControl表格控件中实现多层级主从表数据的展示
在一些应用场景中,我们需要实现多层级的数据表格显示,如常规的二级主从表数据展示,甚至也有多个层级展示的需求,那么我们如何通过DevExpress的GridControl控表格件实现这种业务需求呢?本篇 ...
- tornada模板学习笔记
import tornado.web import tornado.httpserver import tornado.ioloop import tornado.options import os. ...
- 基于OpenCV单目相机的快速标定--源码、工程、实现过程
相机的标定是所有人走进视觉世界需要做的第一件事,辣么多的视觉标定原理解释你可以随便在网上找到,这里只讲到底如何去实现,也算是给刚入门的朋友做个简单的分享. 1.单目相机标定的工程源码 首先请到同性交友 ...
- hdu2062 Subset sequence----递推
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2062 题目大意: 给出n和m,集合{1,2,,,,n}的非空子集,按照一定方式排列,例如n==3时, ...