简介

TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人。

文章包括一下几个部分:

1.为什么要尝试做这个项目?

2.为什么选取了这个模型?

3.模型的数据从哪里来?

4.模型的优化过程?

5.项目可以进一步提升的方向。

对于以比特币为首的数字货币近期的表现,只能用疯狂来形容。来自比特币交易平台的最新价格行情显示,就在此前一天,比特币盘中最高价格达到29838.5元,距离3万元大关仅有咫尺之遥。比特币最近火热的行情,吸引了众多的关注,还有一个人工智能似乎无所不能,那么问题来了,能否用人工智能来进行比特币交易呢?

使用什么模型来进行价格预测?现在热门的 深度神经网络,卷积神经网络,循环神经网络,因为卷积神经网络更适合处理图片,循环神经网络比较适合处理序列化内容,尤其是 LSTM 是 RNN 的升级版。

LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。比特币的成交记录就是事件序列上的加个数据,可以基于过去的成交记录序列来对未来的价格作出预测,和 LSTM 的模型比较合适。接下来的价格可以作为预测结果。

数据集

新的问题来了,数据从哪里来?

需要的数据是一个包含成交价格的序列,然后可以截取一部分作为输入值,接下来的一部分作为预测值。后来找了一下,主流的交易平台都提供了部分历史数据,但都不是很多。最后采用了 btctrade ,用 requests 爬取,它包含比特币的 50 个交易记录。

获取数据集的脚本

get_trades.py 会获取这些交易记录,重新转化为 json ,并且用图片的方式展示出来,供下一步数据分析使用。

运行前需要安装的依赖:

为了爬取数据,需要使用 requests 库,一个非常好用的 HTTP 库。为了把交易的数据可视化,使用了 matplotlib。

pip install requests
pip install matplotlib

模型

rnn_predicter.py

使用 LSMT 模型。截取 10个交易记录作为输入,如果 第 11个价格比第10个高,就把输出设置为 [1,0,0],如果低就设置为 [0,0,1] ,如果相同 [0,1,0]。

for i in range(0,20):
#print(price)
one_predictor=np.array(price[i:i+20],dtype=float)
#print(one_predictor)
train_x.append(one_predictor)
if(int(price[i+20])>int(price[i+21])):
train_y.append(np.array([1,0,0]))
elif (int(price[i + 20]) == int(price[i + 21])):
train_y.append(np.array([0,1,0]))
elif(int(price[i+20])<int(price[i+21])):
train_y.append(np.array([0,0,1]))

下一步定义模型:

tensorflow lstm 模型,需要把 tensor 拆分成序列,然后传入模型。否则回报错,也就是代码中的 x = tf.unstack(x, n_steps, 1) 。

def RNN(x, weights, biases):
#首先把数据拆分为 n 个序列,每一个的维度 (batch_size, n_input)
x = tf.unstack(x, n_steps, 1) # 定一个 lstm cell
lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) # 获得 lstm 的输出
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# 加个线性激活
return tf.matmul(outputs[-1], weights['out']) + biases['out']

获得结果,定义损失函数和优化函数

如何优化模型?

预测值获取之后,对比实际的价格,会有一个损失函数。损失函数使用 softmax_cross_entropy_with_logits 来计算预测值和标记值的差,然后用 AdamOptimizer 来优化损失函数优化模型。

pred = RNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

项目开源地址和训练结果

https://github.com/TensorFlowNews/TensorFlow-Bitcoin-Robot/

训练设备:

GeForce GTX 980 Ti

训练结果:

Iter 998000, Minibatch Loss= 0.730588, Training Accuracy= 0.75000 Optimization Finished!

后续更新发布

http://www.tensorflownews.com/

更新计划

因为交易平台提供的历史交易记录非常少,所以为了进一步提高训练效果,后续要持续的自己保存历史交易数据或者是找到更好的数据来源。还有一个方面是,模型训练完了之后,保存下来,后续可以直接使用。还有针对模型本身还可以做一定的优化,现在只是预测,涨,跌,维持,后续可以进行更加精细的评分,按照历史数据进行回测等等。

模型持久化,训练数据集持久化,测试数据集。

TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人的更多相关文章

  1. TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人。

    简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...

  2. ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]

    ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...

  3. 使用TensorFlow动手实现一个Char-RNN

    https://blog.csdn.net/thriving_fcl/article/details/72565455 前言 学习RNN的时候很多人应该都有看过Andrej Karpathy写的The ...

  4. 基于tensorflow 1.x 的检索机器人chatbot-retrieval

    Chatbot-retrieval说基于tensorflow的检索机器人,原版的代码路径是 https://github.com/dennybritz/chatbot-retrieval, 但是在te ...

  5. 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文 ...

  6. 时间序列深度学习:状态 LSTM 模型预测太阳黑子

    目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...

  7. 基于 Agent 的模型入门:Python 实现隔离仿真

    2005 年诺贝尔经济学奖得主托马斯·谢林(Thomas Schelling)在上世纪 70 年代就纽约的人种居住分布得出了著名的 Schelling segregation model,这是一个 A ...

  8. 个基于TensorFlow的简单故事生成案例:带你了解LSTM

    https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537 在深度学习中,循环神经网络( ...

  9. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

随机推荐

  1. 深度学习之 mnist 手写数字识别

    深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...

  2. C语言学习之弹跳小球

    重新回过头来看了一遍C语言,才发现我自己的无知,C语言其实好强大,我之前学的不过是一点C语法和做几个数学题.正好3月份的考试要考C语言,重新学一遍,先是在中国大学mooc上把翁恺老师的C语言刷了一遍, ...

  3. Java Jar包压缩、解压使用指南

    什么是jar包 JAR(Java Archive)是Java的归档文件,它是一种与平台无关的文件格式,它允许将许多文件组合成一个压缩文件. 如何打/解包 使用jdk/bin/jar.exe工具,配置完 ...

  4. 25.C++- 泛型编程之函数模板(详解)

    本章学习: 1)初探函数模板 2)深入理解函数模板 3)多参函数模板 4)重载函数和函数模板 当我们想写个Swap()交换函数时,通常这样写: void Swap(int& a, int&am ...

  5. kubernetes入门(07)kubernetes的核心概念(4)

    一.pod 二.Volume volume可以为容器提供持久化存储,比如 三.私有镜像 在使用私有镜像时,需要创建一个docker registry secret,并在容器中引用.创建docker r ...

  6. websocketj--随时随地在Web浏览器中操作你的服务端程序

    0 - 有没有觉得Linux标准终端界面输入输出枯燥无味? 1 - 什么?vmstat命令的输出数据不直观?有没有想过能够可视化该命令的输出? 2 - 尝试过用浏览器操作Windows中的cmd吗? ...

  7. 【深度学习】深入理解优化器Optimizer算法(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

    在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...

  8. mybatis批量插入

    <insert id="insertBatch" parameterType="java.util.List" > insert into biz_ ...

  9. Java:现有线程T1/T2/T3,如何确保T1执行完成之后执行T2,T3在T2执行完成之后执行。

    要实现多个线程执行完成先后,就要知道如何实现线程之间的等待,java线程等待实现是join.java的jdk中join方法实现如下: public final synchronized void jo ...

  10. 什么是web框架

    什么是web框架 web应用框架是支持动态网站.网络应用程序的软件框架. web框架的工作方式:接收http请求并处理,分派代码, 产生html,创建http响应. web框架 通常包含了:url路由 ...