2014 Multi-University Training Contest 9#6

Fast Matrix CalculationTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 424    Accepted Submission(s): 219

Problem Description

One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N). 
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

Input

The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.

Output

For each case, output the sum of all the elements in M’ in a line.

Sample Input

4 25 54 45 40 04 2 5 51 3 1 56 31 2 30 3 02 3 44 3 22 5 50 5 03 4 5 1 1 05 3 2 3 3 23 1 5 4 5 20 0

Sample Output

1456

问题:一开始的矩阵快速幂模板好像有点问题,改了之后还不对,原来是初始化的问题,又是没有初始化为0,导致加的时候出错。关键是它第一组是对的,后面就不对了,真实奇怪!

这一题思路还是很简单的,只是比赛的时候没去认真想。。。就去做其他题了。。。

(A*B)^1000*1000矩阵相乘,可以转化为A*(B*A)^(100*100-1)*B 运算次数减少很多,然后不要忘记是(1000*1000-1)

 #include <cstring>

 #include <iostream>

 #include <algorithm>

 #include <cstdio>

 #include <cmath>

 #include <map>

 #include <cstdlib>

 #define M(a,b) memset(a,b,sizeof(a))

 using namespace std;

 const int SMod = ;

 int N,K;

 struct Matrix

 {

     int m[][];

 };

 Matrix Mul(Matrix a,Matrix b,int mm,int kk,int nn)

 {

     Matrix c;

     memset(c.m,,sizeof(c.m));

     for(int i=;i<mm;i++)

         for(int j=;j<nn;j++)

             for(int k=;k<kk;k++)

                 c.m[i][j] += (a.m[i][k]*b.m[k][j])% SMod, c.m[i][j]%=;

     return c;

 }

 Matrix MPow(Matrix a,int n,int nn)

 {

     Matrix res;

     memset(res.m,,sizeof(res.m));

     for(int i = ;i<nn;i++)

         res.m[i][i] = ;

     while(n)

     {

         //cout<<n<<'!'<<endl;

         if(n&)

             res = Mul(res,a,nn,nn,nn);

         n>>=;

         a = Mul(a,a,nn,nn,nn);

     }

     return res;

 }

 int A[][],B[][],C[][],D[][];

 int main()

 {

    while(scanf("%d%d",&N,&K)==&&N+K!=)

    {

        Matrix M,te;

        M(M.m,);

        M(te.m,);

        M(A,);

        M(B,);

        M(C,);

        M(D,);

        for(int i = ;i<N;i++)

         for(int j = ;j<K;j++)

        {

            scanf("%d",&A[i][j]);

        }

        for(int i = ;i<K;i++)

         for(int j = ;j<N;j++)

        {

            scanf("%d",&B[i][j]);

        }

         for(int i=;i<K;i++)

         for(int j=;j<K;j++)

             for(int k=;k<N;k++)

                 M.m[i][j] += (B[i][k]*A[k][j])%SMod, M.m[i][j]%=SMod;

        int ans = ;

        te = MPow(M,N*N-,K);

         for(int i=;i<N;i++)

         for(int j=;j<K;j++)

             for(int k=;k<K;k++)

                 C[i][j] += ((A[i][k]*te.m[k][j])%SMod + SMod) % SMod;

         for(int i=;i<N;i++)

         for(int j=;j<N;j++)

             for(int k=;k<K;k++)

                 D[i][j] += ((C[i][k]*B[k][j])%SMod + SMod) % SMod;

        for(int i = ;i<N;i++)

          {for(int j = ;j<N;j++)

          {

              //cout<<D[i][j]%SMod<<' ';

              ans+=D[i][j]%SMod;

          }

            //cout<<endl;

          }

        printf("%d\n",ans);

    }

    return ;

 }

2014 Multi-University Training Contest 9#6的更多相关文章

  1. HDU4888 Redraw Beautiful Drawings(2014 Multi-University Training Contest 3)

    Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  2. hdu 4946 2014 Multi-University Training Contest 8

    Area of Mushroom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  3. 2014 Multi-University Training Contest 9#11

    2014 Multi-University Training Contest 9#11 Killing MonstersTime Limit: 2000/1000 MS (Java/Others)   ...

  4. 2014 Multi-University Training Contest 1/HDU4861_Couple doubi(数论/法)

    解题报告 两人轮流取球,大的人赢,,, 贴官方题解,,,反正我看不懂.,,先留着理解 关于费马小定理 关于原根 找规律找到的,,,sad,,, 非常easy找到循环节为p-1,每个循环节中有一个非零的 ...

  5. 2014 Multi-University Training Contest 1/HDU4864_Task(贪心)

    解题报告 题意,有n个机器.m个任务. 每一个机器至多能完毕一个任务.对于每一个机器,有一个最大执行时间Ti和等级Li,对于每一个任务,也有一个执行时间Tj和等级Lj.仅仅有当Ti>=Tj且Li ...

  6. hdu 4937 2014 Multi-University Training Contest 7 1003

    Lucky Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) T ...

  7. hdu 4941 2014 Multi-University Training Contest 7 1007

    Magical Forest Time Limit: 24000/12000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  8. hdu 4939 2014 Multi-University Training Contest 7 1005

    Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  9. hdu 4930 Fighting the Landlords--2014 Multi-University Training Contest 6

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4930 Fighting the Landlords Time Limit: 2000/1000 MS ...

随机推荐

  1. [转]ASP.NET Core 之 Identity 入门(一)

    本文转自:http://www.cnblogs.com/savorboard/p/aspnetcore-identity.html 前言 在 ASP.NET Core 中,仍然沿用了 ASP.NET里 ...

  2. Leetcode: plus one

    June 22, 2015 Given a number represented as an array of digits, plus one to the number. Leetcode: pl ...

  3. 三维网格补洞算法(Radial Basis Function)

    在逆向工程中,由于设备或模型的原因,我们获取得到的三维模型数据往往并不完整,从而使得生成的网格模型存在孔洞,这对后续的模型分析会造成影响.下面介绍一种基于径向基函数(RBF:Radial Basis ...

  4. 我离baidu.com有几跳

    一.背景 最近,读了网易游戏面试经验(三) - cotyb - 博客园之后,自己尝试着在windows下tracert了一下baidu.com,结果如下图一所示,发现从tracert的结果看,似乎一直 ...

  5. 银行卡BIN: Bank Identification Number

    What is a 'Bank Identification Number - BIN'A bank identification number (BIN) is the initial four t ...

  6. 1264: [AHOI2006]基因匹配Match

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 982  Solved: 635[Submit][S ...

  7. C#.NET 大型企业信息化系统集成快速开发平台 4.2 版本 - 适合大型企业信息化应用使用的角色权限管理体系

    每个人外表看看都没什么大区别.但是内在的知识.处理问题的能力.解决问题的能力.头脑灵活性都会有很大的差距.软件组件也是一样,有些组件编写厉害,想问题深入,能处理的难题也多,构思巧妙. 通用快速开发平台 ...

  8. IO(六)--- 编码和解码

    编码: 把看得懂的字符变成看不懂码值这个过程我们称作为编码. 解码: 把码值查找对应的字符,我们把这个过程称作为解码. 注意: 以后编码与解码一般我们都使用统一的码表.否则非常容易出乱码. 常用码表: ...

  9. ReactNative新手学习之路03真机调试

    React Native新手入门03真机调试(iOS) 从设备访问开发服务器 在启用开发服务器的情况下,你可以快速的迭代修改应用,然后在设备上查看结果.这样做的前提是你的电脑和设备必须在同一个wifi ...

  10. Golang gzip的压缩和解压

    package src import ( "bytes" "compress/gzip" ) func GzipEncode(in []byte) ([]byt ...